Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neuron ; 110(19): 3106-3120.e7, 2022 10 05.
Article in English | MEDLINE | ID: mdl-35961320

ABSTRACT

Breakdown of the blood-central nervous system barrier (BCNSB) is a hallmark of many neuroinflammatory disorders, such as multiple sclerosis (MS). Using a mouse model of MS, experimental autoimmune encephalomyelitis (EAE), we show that endothelial-to-mesenchymal transition (EndoMT) occurs in the CNS before the onset of clinical symptoms and plays a major role in the breakdown of BCNSB function. EndoMT can be induced by an IL-1ß-stimulated signaling pathway in which activation of the small GTPase ADP ribosylation factor 6 (ARF6) leads to crosstalk with the activin receptor-like kinase (ALK)-SMAD1/5 pathway. Inhibiting the activation of ARF6 both prevents and reverses EndoMT, stabilizes BCNSB function, reduces demyelination, and attenuates symptoms even after the establishment of severe EAE, without immunocompromising the host. Pan-inhibition of ALKs also reduces disease severity in the EAE model. Therefore, multiple components of the IL-1ß-ARF6-ALK-SMAD1/5 pathway could be targeted for the treatment of a variety of neuroinflammatory disorders.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Monomeric GTP-Binding Proteins , Multiple Sclerosis , Activin Receptors/metabolism , Animals , Central Nervous System/metabolism , Mice , Mice, Inbred C57BL , Monomeric GTP-Binding Proteins/metabolism , Neuroinflammatory Diseases , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction
2.
Article in English | MEDLINE | ID: mdl-32393494

ABSTRACT

The rise in multidrug-resistant (MDR) organisms portends a serious global threat to the health care system with nearly untreatable infectious diseases, including pneumonia and its often fatal sequelae, acute respiratory distress syndrome (ARDS) and sepsis. Gram-negative bacteria (GNB), including Acinetobacter baumannii, Pseudomonas aeruginosa, and carbapenemase-producing Klebsiella pneumoniae (CPKP), are among the World Health Organization's and National Institutes of Health's high-priority MDR pathogens for targeted development of new therapies. Here, we show that stabilizing the host's vasculature by genetic deletion or pharmacological inhibition of the small GTPase ADP-ribosylation factor 6 (ARF6) increases survival rates of mice infected with A. baumannii, P. aeruginosa, and CPKP. We show that the pharmacological inhibition of ARF6-GTP phenocopies endothelium-specific Arf6 disruption in enhancing the survival of mice with A. baumannii pneumonia, suggesting that inhibition is on target. Finally, we show that the mechanism of protection elicited by these small-molecule inhibitors acts by the restoration of vascular integrity disrupted by GNB lipopolysaccharide (LPS) activation of the TLR4/MyD88/ARNO/ARF6 pathway. By targeting the host's vasculature with small-molecule inhibitors of ARF6 activation, we circumvent microbial drug resistance and provide a potential alternative/adjunctive treatment for emerging and reemerging pathogens.


Subject(s)
Acinetobacter baumannii , Gram-Negative Bacterial Infections , ADP-Ribosylation Factor 6 , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial/genetics , Gram-Negative Bacteria , Gram-Negative Bacterial Infections/drug therapy , Mice , Microbial Sensitivity Tests , Pseudomonas aeruginosa
3.
Mol Pharm ; 15(3): 1169-1179, 2018 03 05.
Article in English | MEDLINE | ID: mdl-29436835

ABSTRACT

Peptides often suffer from short in vivo half-lives due to proteolysis and renal clearance that limit their therapeutic potential in many indications, necessitating pharmacokinetic (PK) enhancement. d-Peptides, composed of mirror-image d-amino acids, overcome proteolytic degradation but are still vulnerable to renal filtration due to their small size. If renal filtration could be slowed, d-peptides would be promising therapeutic agents for infrequent dosing, such as in extended-release depots. Here, we tether a diverse set of PK-enhancing cargoes to our potent, protease-resistant d-peptide HIV entry inhibitor, PIE12-trimer. This inhibitor panel provides an opportunity to evaluate the PK impact of the cargoes independently of proteolysis. While all the PK-enhancing strategies (PEGylation, acylation, alkylation, and cholesterol conjugation) improved in vivo half-life, cholesterol conjugation of PIE12-trimer dramatically improves both antiviral potency and half-life in rats, making it our lead anti-HIV drug candidate. We designed its chemical synthesis for large-scale production (CPT31) and demonstrated that the PK profile in cynomolgous monkeys supports future development of monthly or less frequent depot dosing in humans. CPT31 could address an urgent need in both HIV prevention and treatment.


Subject(s)
HIV Fusion Inhibitors/pharmacokinetics , HIV Infections/drug therapy , HIV-1/drug effects , Peptide Fragments/pharmacokinetics , Animals , Cholesterol/chemistry , Delayed-Action Preparations , Drug Carriers/chemistry , Drug Design , Drug Evaluation, Preclinical , HIV Fusion Inhibitors/administration & dosage , HIV Fusion Inhibitors/chemical synthesis , HIV Infections/prevention & control , HIV Infections/virology , HIV-1/physiology , Half-Life , Macaca fascicularis , Male , Models, Animal , Peptide Fragments/administration & dosage , Peptide Fragments/chemical synthesis , Rats , Rats, Sprague-Dawley , Stereoisomerism
4.
J Clin Invest ; 127(12): 4569-4582, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29058688

ABSTRACT

The devastating sequelae of diabetes mellitus include microvascular permeability, which results in retinopathy. Despite clinical and scientific advances, there remains a need for new approaches to treat retinopathy. Here, we have presented a possible treatment strategy, whereby targeting the small GTPase ARF6 alters VEGFR2 trafficking and reverses signs of pathology in 4 animal models that represent features of diabetic retinopathy and in a fifth model of ocular pathological angiogenesis. Specifically, we determined that the same signaling pathway utilizes distinct GEFs to sequentially activate ARF6, and these GEFs exert distinct but complementary effects on VEGFR2 trafficking and signal transduction. ARF6 activation was independently regulated by 2 different ARF GEFs - ARNO and GEP100. Interaction between VEGFR2 and ARNO activated ARF6 and stimulated VEGFR2 internalization, whereas a VEGFR2 interaction with GEP100 activated ARF6 to promote VEGFR2 recycling via coreceptor binding. Intervening in either pathway inhibited VEGFR2 signal output. Finally, using a combination of in vitro, cellular, genetic, and pharmacologic techniques, we demonstrated that ARF6 is pivotal in VEGFR2 trafficking and that targeting ARF6-mediated VEGFR2 trafficking has potential as a therapeutic approach for retinal vascular diseases such as diabetic retinopathy.


Subject(s)
ADP-Ribosylation Factors/metabolism , Diabetic Retinopathy/metabolism , Signal Transduction , Vascular Endothelial Growth Factor Receptor-2/metabolism , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/genetics , Cell Line , Diabetic Retinopathy/genetics , Diabetic Retinopathy/pathology , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Humans , Protein Transport , Vascular Endothelial Growth Factor Receptor-2/genetics
5.
Cancer Cell ; 29(6): 889-904, 2016 06 13.
Article in English | MEDLINE | ID: mdl-27265506

ABSTRACT

Activating mutations in Gαq proteins, which form the α subunit of certain heterotrimeric G proteins, drive uveal melanoma oncogenesis by triggering multiple downstream signaling pathways, including PLC/PKC, Rho/Rac, and YAP. Here we show that the small GTPase ARF6 acts as a proximal node of oncogenic Gαq signaling to induce all of these downstream pathways as well as ß-catenin signaling. ARF6 activates these diverse pathways through a common mechanism: the trafficking of GNAQ and ß-catenin from the plasma membrane to cytoplasmic vesicles and the nucleus, respectively. Blocking ARF6 with a small-molecule inhibitor reduces uveal melanoma cell proliferation and tumorigenesis in a mouse model, confirming the functional relevance of this pathway and suggesting a therapeutic strategy for Gα-mediated diseases.


Subject(s)
ADP-Ribosylation Factors/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Melanoma/drug therapy , Small Molecule Libraries/administration & dosage , Uveal Neoplasms/drug therapy , beta Catenin/metabolism , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/antagonists & inhibitors , ADP-Ribosylation Factors/genetics , Animals , Cell Line, Tumor , Cell Membrane/metabolism , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Cytoplasm/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Humans , Melanoma/genetics , Melanoma/metabolism , Mice , Neoplasm Transplantation , Protein Transport/drug effects , Signal Transduction/drug effects , Small Molecule Libraries/pharmacology , Uveal Neoplasms/genetics , Uveal Neoplasms/metabolism
6.
Chem Commun (Camb) ; 47(26): 7521-3, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21625685

ABSTRACT

We established a homogeneous luminescent oxygen channeling sensor for measuring activation states of small GTPases. The assay quantifies activated GTPases in cell lysates, can be applied to different GTPases, and can be used for multiplex screening. The study will provide guidelines for determining activation states of diverse GTPases in various biological contexts.


Subject(s)
Biosensing Techniques/methods , Luminescent Measurements , Monomeric GTP-Binding Proteins/metabolism , Oxygen/metabolism , Animals , Enzyme Activation , Mice , NIH 3T3 Cells , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...