Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38979132

ABSTRACT

Nicotinamide adenine dinucleotide (NAD) is essential for many enzymatic reactions, including those involved in energy metabolism, DNA repair and the activity of sirtuins, a family of defensive deacylases. During aging, levels of NAD + can decrease by up to 50% in some tissues, the repletion of which provides a range of health benefits in both mice and humans. Whether or not the NAD + precursor nicotinamide mononucleotide (NMN) extends lifespan in mammals is not known. Here we investigate the effect of long-term administration of NMN on the health, cancer burden, frailty and lifespan of male and female mice. Without increasing tumor counts or severity in any tissue, NMN treatment of males and females increased activity, maintained more youthful gene expression patterns, and reduced overall frailty. Reduced frailty with NMN treatment was associated with increases in levels of Anerotruncus colihominis, a gut bacterium associated with lower inflammation in mice and increased longevity in humans. NMN slowed the accumulation of adipose tissue later in life and improved metabolic health in male but not female mice, while in females but not males, NMN increased median lifespan by 8.5%, possible due to sex-specific effects of NMN on NAD + metabolism. Together, these data show that chronic NMN treatment delays frailty, alters the microbiome, improves male metabolic health, and increases female mouse lifespan, without increasing cancer burden. These results highlight the potential of NAD + boosters for treating age-related conditions and the importance of using both sexes for interventional lifespan studies.

2.
Cell Transplant ; 33: 9636897241242624, 2024.
Article in English | MEDLINE | ID: mdl-38600801

ABSTRACT

Xenografts of human skeletal muscle generated in mice can be used to study muscle pathology and to test drugs designed to treat myopathies and muscular dystrophies for their efficacy and specificity in human tissue. We previously developed methods to generate mature human skeletal muscles in immunocompromised mice starting with human myogenic precursor cells (hMPCs) from healthy individuals and individuals with facioscapulohumeral muscular dystrophy (FSHD). Here, we examine a series of alternative treatments at each stage in order to optimize engraftment. We show that (i) X-irradiation at 25Gy is optimal in preventing regeneration of murine muscle while supporting robust engraftment and the formation of human fibers without significant murine contamination; (ii) hMPC lines differ in their capacity to engraft; (iii) some hMPC lines yield grafts that respond better to intermittent neuromuscular electrical stimulation (iNMES) than others; (iv) some lines engraft better in male than in female mice; (v) coinjection of hMPCs with laminin, gelatin, Matrigel, or Growdex does not improve engraftment; (vi) BaCl2 is an acceptable replacement for cardiotoxin, but other snake venom preparations and toxins, including the major component of cardiotoxin, cytotoxin 5, are not; and (vii) generating grafts in both hindlimbs followed by iNMES of each limb yields more robust grafts than housing mice in cages with running wheels. Our results suggest that replacing cardiotoxin with BaCl2 and engrafting both tibialis anterior muscles generates robust grafts of adult human muscle tissue in mice.


Subject(s)
Cardiotoxins , Muscular Dystrophy, Facioscapulohumeral , Adult , Humans , Male , Mice , Female , Animals , Heterografts , Transplantation, Heterologous , Muscle, Skeletal/pathology , Muscular Dystrophy, Facioscapulohumeral/pathology
3.
Nat Aging ; 4(2): 261-274, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38200273

ABSTRACT

Epigenetic 'clocks' based on DNA methylation have emerged as the most robust and widely used aging biomarkers, but conventional methods for applying them are expensive and laborious. Here we develop tagmentation-based indexing for methylation sequencing (TIME-seq), a highly multiplexed and scalable method for low-cost epigenetic clocks. Using TIME-seq, we applied multi-tissue and tissue-specific epigenetic clocks in over 1,800 mouse DNA samples from eight tissue and cell types. We show that TIME-seq clocks are accurate and robust, enriched for polycomb repressive complex 2-regulated loci, and benchmark favorably against conventional methods despite being up to 100-fold less expensive. Using dietary treatments and gene therapy, we find that TIME-seq clocks reflect diverse interventions in multiple tissues. Finally, we develop an economical human blood clock (R > 0.96, median error = 3.39 years) in 1,056 demographically representative individuals. These methods will enable more efficient epigenetic clock measurement in larger-scale human and animal studies.


Subject(s)
DNA Methylation , Labor, Obstetric , Pregnancy , Female , Humans , Mice , Animals , DNA Methylation/genetics , Epigenesis, Genetic , Aging/genetics , Epigenomics/methods
4.
Sci Immunol ; 8(89): eadi5377, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37922340

ABSTRACT

Exercise enhances physical performance and reduces the risk of many disorders such as cardiovascular disease, type 2 diabetes, dementia, and cancer. Exercise characteristically incites an inflammatory response, notably in skeletal muscles. Although some effector mechanisms have been identified, regulatory elements activated in response to exercise remain obscure. Here, we have addressed the roles of Foxp3+CD4+ regulatory T cells (Tregs) in the healthful activities of exercise via immunologic, transcriptomic, histologic, metabolic, and biochemical analyses of acute and chronic exercise models in mice. Exercise rapidly induced expansion of the muscle Treg compartment, thereby guarding against overexuberant production of interferon-γ and consequent metabolic disruptions, particularly mitochondrial aberrancies. The performance-enhancing effects of exercise training were dampened in the absence of Tregs. Thus, exercise is a natural Treg booster with therapeutic potential in disease and aging contexts.


Subject(s)
Diabetes Mellitus, Type 2 , T-Lymphocytes, Regulatory , Mice , Animals , Interferon-gamma , Diabetes Mellitus, Type 2/metabolism , Transcription Factors/metabolism , Mitochondria, Muscle
5.
Cell Metab ; 34(10): 1411-1412, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36198284

Subject(s)
Metabolic Syndrome , Humans
6.
PLoS Comput Biol ; 18(8): e1009938, 2022 08.
Article in English | MEDLINE | ID: mdl-35984867

ABSTRACT

Epigenetic clocks allow us to accurately predict the age and future health of individuals based on the methylation status of specific CpG sites in the genome and are a powerful tool to measure the effectiveness of longevity interventions. There is a growing need for methods to efficiently construct epigenetic clocks. The most common approach is to create clocks using elastic net regression modelling of all measured CpG sites, without first identifying specific features or CpGs of interest. The addition of feature selection approaches provides the opportunity to optimise the identification of predictive CpG sites. Here, we apply novel feature selection methods and combinatorial approaches including newly adapted neural networks, genetic algorithms, and 'chained' combinations. Human whole blood methylation data of ~470,000 CpGs was used to develop clocks that predict age with R2 correlation scores of greater than 0.73, the most predictive of which uses 35 CpG sites for a R2 correlation score of 0.87. The five most frequent sites across all clocks were modelled to build a clock with a R2 correlation score of 0.83. These two clocks are validated on two external datasets where they maintain excellent predictive accuracy. When compared with three published epigenetic clocks (Hannum, Horvath, Weidner) also applied to these validation datasets, our clocks outperformed all three models. We identified gene regulatory regions associated with selected CpGs as possible targets for future aging studies. Thus, our feature selection algorithms build accurate, generalizable clocks with a low number of CpG sites, providing important tools for the field.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Aging/genetics , CpG Islands/genetics , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Epigenomics , Humans , Longevity/genetics
7.
Aging (Albany NY) ; 12(10): 9959-9981, 2020 05 29.
Article in English | MEDLINE | ID: mdl-32470948

ABSTRACT

The severity and outcome of coronavirus disease 2019 (COVID-19) largely depends on a patient's age. Adults over 65 years of age represent 80% of hospitalizations and have a 23-fold greater risk of death than those under 65. In the clinic, COVID-19 patients most commonly present with fever, cough and dyspnea, and from there the disease can progress to acute respiratory distress syndrome, lung consolidation, cytokine release syndrome, endotheliitis, coagulopathy, multiple organ failure and death. Comorbidities such as cardiovascular disease, diabetes and obesity increase the chances of fatal disease, but they alone do not explain why age is an independent risk factor. Here, we present the molecular differences between young, middle-aged and older people that may explain why COVID-19 is a mild illness in some but life-threatening in others. We also discuss several biological age clocks that could be used in conjunction with genetic tests to identify both the mechanisms of the disease and individuals most at risk. Finally, based on these mechanisms, we discuss treatments that could increase the survival of older people, not simply by inhibiting the virus, but by restoring patients' ability to clear the infection and effectively regulate immune responses.


Subject(s)
Aging/physiology , Coronavirus Infections , Epigenesis, Genetic/physiology , Immunity/physiology , Pandemics , Patient Care Management/methods , Pneumonia, Viral , Aged , Betacoronavirus/isolation & purification , Betacoronavirus/physiology , COVID-19 , Comorbidity , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Humans , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/therapy , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/immunology , Risk Assessment , Risk Factors , SARS-CoV-2 , Severity of Illness Index
8.
J Muscle Res Cell Motil ; 41(4): 297-311, 2020 12.
Article in English | MEDLINE | ID: mdl-31392564

ABSTRACT

Xenografts of skeletal muscle are used to study muscle repair and regeneration, mechanisms of muscular dystrophies, and potential cell therapies for musculoskeletal disorders. Typically, xenografting involves using an immunodeficient host that is pre-injured to create a niche for human cell engraftment. Cell type and method of delivery to muscle depend on the specific application, but can include myoblasts, satellite cells, induced pluripotent stem cells, mesangioblasts, immortalized muscle precursor cells, and other multipotent cell lines delivered locally or systemically. Some studies follow cell engraftment with interventions to enhance cell proliferation, migration, and differentiation into mature muscle fibers. Recently, several advances in xenografting human-derived muscle cells have been applied to study and treat Duchenne muscular dystrophy and Facioscapulohumeral muscular dystrophy. Here, we review the vast array of techniques available to aid researchers in designing future experiments aimed at creating robust muscle xenografts in rodent hosts.


Subject(s)
Cell Transplantation/methods , Muscle, Skeletal/metabolism , Animals , Humans , Mice , Mice, Inbred NOD , Mice, SCID
9.
Exp Neurol ; 320: 113011, 2019 10.
Article in English | MEDLINE | ID: mdl-31306642

ABSTRACT

Aberrant expression of DUX4, a gene unique to humans and primates, causes Facioscapulohumeral Muscular Dystrophy-1 (FSHD), yet the pathogenic mechanism is unknown. As transgenic overexpression models have largely failed to replicate the genetic changes seen in FSHD, many studies of endogenously expressed DUX4 have been limited to patient biopsies and myogenic cell cultures, which never fully differentiate into mature muscle fibers. We have developed a method to xenograft immortalized human muscle precursor cells from patients with FSHD and first-degree relative controls into the tibialis anterior muscle compartment of immunodeficient mice, generating human muscle xenografts. We report that FSHD cells mature into organized and innervated human muscle fibers with minimal contamination of murine myonuclei. They also reconstitute the satellite cell niche within the xenografts. FSHD xenografts express DUX4 and DUX4 downstream targets, retain the 4q35 epigenetic signature of their original donors, and express a novel protein biomarker of FSHD, SLC34A2. Ours is the first scalable, mature in vivo human model of FSHD. It should be useful for studies of the pathogenic mechanism of the disease as well as for testing therapeutic strategies targeting DUX4 expression.


Subject(s)
Disease Models, Animal , Heterografts , Muscular Dystrophy, Facioscapulohumeral , Myoblasts/transplantation , Animals , Homeodomain Proteins/genetics , Humans , Mice , Muscle, Skeletal/pathology , Muscular Dystrophy, Facioscapulohumeral/genetics
10.
Physiol Rep ; 6(11): e13727, 2018 06.
Article in English | MEDLINE | ID: mdl-29890050

ABSTRACT

B6.A-Dysfprmd /GeneJ (BLAJ) mice model human limb-girdle muscular dystrophy 2B (LGMD2B), which is linked to mutations in the dysferlin (DYSF) gene. We tested the hypothesis that, the calcium ion (Ca2+ ) channel blocker diltiazem (DTZ), reduces contraction-induced skeletal muscle damage, in BLAJ mice. We randomly assigned mice (N = 12; 3-4 month old males) to one of two groups - DTZ (N = 6) or vehicle (VEH, distilled water, N = 6). We conditioned mice with either DTZ or VEH for 1 week, after which, their tibialis anterior (TA) muscles were tested for contractile torque and susceptibility to injury from forced eccentric contractions. We continued dosing with DTZ or VEH for 3 days following eccentric contractions, and then studied torque recovery and muscle damage. We analyzed contractile torque before eccentric contractions, immediately after eccentric contractions, and at 3 days after eccentric contractions; and counted damaged fibers in the injured and uninjured TA muscles. We found that DTZ improved contractile torque before and immediately after forced eccentric contractions, but did not reduce delayed-onset muscle damage that was observed at 3 days after eccentric contractions.


Subject(s)
Calcium Channel Blockers/administration & dosage , Diltiazem/administration & dosage , Dysferlin/genetics , Muscle Contraction/drug effects , Muscle, Skeletal/drug effects , Muscular Dystrophies, Limb-Girdle/prevention & control , Muscular Dystrophies, Limb-Girdle/physiopathology , Animals , Disease Models, Animal , Male , Mice, Knockout , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Dystrophies, Limb-Girdle/genetics
11.
Appl Physiol Nutr Metab ; 41(10): 1108-1111, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27628198

ABSTRACT

We performed a placebo-controlled pre-clinical study to determine if sodium 4-phenylbutyrate (4PB) can reduce contraction-induced myofiber damage in the mdx mouse model of Duchenne muscular dystrophy (DMD). At 72 h post-eccentric contractions, 4PB significantly increased contractile torque and reduced myofiber damage and macrophage infiltration. We conclude that 4PB, which is approved by Health Canada (Pheburane) and the United States Food and Drug Administration (Buphenyl) for urea cycle disorders, might modify disease severity in patients with DMD.


Subject(s)
Histone Deacetylase Inhibitors/therapeutic use , Macrophage Activation/drug effects , Muscle, Skeletal/drug effects , Muscular Dystrophy, Duchenne/drug therapy , Musculoskeletal Manipulations/adverse effects , Myofibrils/drug effects , Phenylbutyrates/therapeutic use , Animals , Hindlimb , Histone Deacetylase Inhibitors/administration & dosage , Injections, Intraperitoneal , Leg Injuries/prevention & control , Male , Mice, Inbred mdx , Muscle Contraction/drug effects , Muscle, Skeletal/immunology , Muscle, Skeletal/injuries , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/immunology , Muscular Dystrophy, Duchenne/pathology , Myofibrils/immunology , Myofibrils/pathology , Phenylbutyrates/administration & dosage , Torque
12.
Skelet Muscle ; 6: 4, 2016.
Article in English | MEDLINE | ID: mdl-26925213

ABSTRACT

BACKGROUND: Studies of the pathogenic mechanisms underlying human myopathies and muscular dystrophies often require animal models, but models of some human diseases are not yet available. Methods to promote the engraftment and development of myogenic cells from individuals with such diseases in mice would accelerate such studies and also provide a useful tool for testing therapeutics. Here, we investigate the ability of immortalized human myogenic precursor cells (hMPCs) to form mature human myofibers following implantation into the hindlimbs of non-obese diabetic-Rag1 (null) IL2rγ (null) (NOD-Rag)-immunodeficient mice. RESULTS: We report that hindlimbs of NOD-Rag mice that are X-irradiated, treated with cardiotoxin, and then injected with immortalized control hMPCs or hMPCs from an individual with facioscapulohumeral muscular dystrophy (FSHD) develop mature human myofibers. Furthermore, intermittent neuromuscular electrical stimulation (iNMES) of the peroneal nerve of the engrafted limb enhances the development of mature fibers in the grafts formed by both immortal cell lines. With control cells, iNMES increases the number and size of the human myofibers that form and promotes closer fiber-to-fiber packing. The human myofibers in the graft are innervated, fully differentiated, and minimally contaminated with murine myonuclei. CONCLUSIONS: Our results indicate that control and FSHD human myofibers can form in mice engrafted with hMPCs and that iNMES enhances engraftment and subsequent development of mature human muscle.


Subject(s)
Cell Differentiation , Electric Stimulation/methods , Muscle Development , Muscular Dystrophy, Facioscapulohumeral/pathology , Myoblasts, Skeletal/transplantation , Neuromuscular Junction , Peroneal Nerve , Adult , Animals , Biomarkers/metabolism , Cell Line , Cell Proliferation , Cell Survival , Graft Survival , Heterografts , Humans , Male , Mice, Inbred NOD , Mice, Transgenic , Muscular Dystrophy, Facioscapulohumeral/metabolism , Myoblasts, Skeletal/metabolism , Myoblasts, Skeletal/pathology , Time Factors
13.
Am J Pathol ; 185(6): 1686-98, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25920768

ABSTRACT

Mutations in the dysferlin gene (DYSF) lead to human muscular dystrophies known as dysferlinopathies. The dysferlin-deficient A/J mouse develops a mild myopathy after 6 months of age, and when younger models the subclinical phase of the human disease. We subjected the tibialis anterior muscle of 3- to 4-month-old A/J mice to in vivo large-strain injury (LSI) from lengthening contractions and studied the progression of torque loss, myofiber damage, and inflammation afterward. We report that myofiber damage in A/J mice occurs before inflammatory cell infiltration. Peak edema and inflammation, monitored by magnetic resonance imaging and by immunofluorescence labeling of neutrophils and macrophages, respectively, develop 24 to 72 hours after LSI, well after the appearance of damaged myofibers. Cytokine profiles 72 hours after injury are consistent with extensive macrophage infiltration. Dysferlin-sufficient A/WySnJ mice show much less myofiber damage and inflammation and lesser cytokine levels after LSI than do A/J mice. Partial suppression of macrophage infiltration by systemic administration of clodronate-incorporated liposomes fails to suppress LSI-induced damage or to accelerate torque recovery in A/J mice. The findings from our studies suggest that, although macrophage infiltration is prominent in dysferlin-deficient A/J muscle after LSI, it is the consequence and not the cause of progressive myofiber damage.


Subject(s)
Inflammation/pathology , Macrophages/pathology , Muscle, Skeletal/pathology , Muscular Dystrophies, Limb-Girdle/pathology , Animals , Disease Models, Animal , Dysferlin , Inflammation/metabolism , Macrophages/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout , Muscle, Skeletal/injuries , Muscle, Skeletal/metabolism , Muscular Dystrophies, Limb-Girdle/metabolism
14.
Muscle Nerve ; 50(2): 286-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24639380

ABSTRACT

INTRODUCTION: We adopted a proteomics-based approach to gain insights into phenotypic differences between A/J and B10.SJL murine dysferlinopathy models. METHODS: We optimized immunoblotting of dysferlin by preparing homogenates of the tibialis anterior (TA) muscle under several different conditions. We compared TA muscles of control, A/J, and B10.SJL mice for levels of dysferlin; dysferlin's partners MG53, annexin-A2, and caveolin-3; and the endoplasmic reticulum (ER) stress marker CHOP. We performed immunoelectron microscopy on control rat TA muscle to determine the precise location of dysferlin. RESULTS: RIPA (radioimmunoprecipitation assay) buffer and sonication improves immunoblotting of dysferlin. The ER stress marker CHOP is elevated in A/J muscle. Dysferlin is localized mostly to membranes close to the Z-disk that have been reported to be part of the Golgi, ER, and sarcoplasmic reticulum (SR) networks. CONCLUSIONS: ER stress might underlie phenotypic differences between A/J and B10.SJL mice and play a role in human dysferlinopathies.


Subject(s)
Immunoblotting , Muscular Dystrophies, Limb-Girdle/diagnosis , Muscular Dystrophies, Limb-Girdle/physiopathology , Phenotype , Animals , Annexin A2/metabolism , Carrier Proteins/metabolism , Caveolin 3/metabolism , Disease Models, Animal , Endoplasmic Reticulum Stress/physiology , Membrane Proteins , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Radioimmunoprecipitation Assay , Species Specificity , Transcription Factor CHOP/metabolism
15.
Proc Natl Acad Sci U S A ; 110(51): 20831-6, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24302765

ABSTRACT

Dysferlinopathies, most commonly limb girdle muscular dystrophy 2B and Miyoshi myopathy, are degenerative myopathies caused by mutations in the DYSF gene encoding the protein dysferlin. Studies of dysferlin have focused on its role in the repair of the sarcolemma of skeletal muscle, but dysferlin's association with calcium (Ca(2+)) signaling proteins in the transverse (t-) tubules suggests additional roles. Here, we reveal that dysferlin is enriched in the t-tubule membrane of mature skeletal muscle fibers. Following experimental membrane stress in vitro, dysferlin-deficient muscle fibers undergo extensive functional and structural disruption of the t-tubules that is ameliorated by reducing external [Ca(2+)] or blocking L-type Ca(2+) channels with diltiazem. Furthermore, we demonstrate that diltiazem treatment of dysferlin-deficient mice significantly reduces eccentric contraction-induced t-tubule damage, inflammation, and necrosis, which resulted in a concomitant increase in postinjury functional recovery. Our discovery of dysferlin as a t-tubule protein that stabilizes stress-induced Ca(2+) signaling offers a therapeutic avenue for limb girdle muscular dystrophy 2B and Miyoshi myopathy patients.


Subject(s)
Calcium Signaling , Cell Membrane/metabolism , Membrane Proteins/metabolism , Muscle Fibers, Skeletal/metabolism , Muscular Dystrophies, Limb-Girdle/metabolism , Stress, Physiological , Animals , Antihypertensive Agents/pharmacology , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Cell Membrane/pathology , Diltiazem/pharmacology , Dysferlin , Membrane Proteins/genetics , Mice , Mice, Mutant Strains , Muscle Contraction/drug effects , Muscle Contraction/genetics , Muscle Fibers, Skeletal/pathology , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/pathology , Necrosis/genetics , Necrosis/metabolism , Necrosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...