Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Molecules ; 27(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36234747

ABSTRACT

Parallel extraction of headspace volatiles from multiwell plates using sorbent sheets (HS-SPMESH) followed by direct analysis in real-time high-resolution mass spectrometry (DART-HRMS) can be used as a rapid alternative to solid-phase micro-extraction (SPME) gas-chromatography mass-spectrometry (GC-MS) for trace level volatile analyses. However, an earlier validation study of SPMESH-DART-MS using 3-isobutyl-2-methoxypyrazine (IBMP) in grape juice showed poor correlation between SPMESH-DART-MS and a gold standard SPME-GC-MS around the compound's odor detection threshold (<10 ng/kg) in grape juice, and lacked sufficient sensitivity to detect IBMP at this concentration in grape homogenate. In this work, we report on the development and validation of an improved SPMESH extraction approach that lowers the limit of detection (LOD < 0.5 ng/kg), and regulates crosstalk between wells (<0.5%) over a calibration range of 0.5−100 ng/kg. The optimized SPMESH-DART-MS method was validated using Cabernet Sauvignon and Merlot grape samples harvested from commercial vineyards in the central valley of California (n = 302) and achieved good correlation and agreement with SPME-GC-MS (R2 = 0.84) over the native range of IBMP (<0.5−20 ng/kg). Coupling of SPMESH to a lower resolution triple quadrupole (QqQ)-MS via a new JumpShot-HTS DART source also achieved low ng/kg detection limits, and throughput was improved through positioning stage optimizations which reduced time spent on intra-well SPMESH areas.


Subject(s)
Vitis , Gas Chromatography-Mass Spectrometry/methods , Pyrazines/analysis , Solid Phase Microextraction/methods , Vitis/chemistry
2.
Dalton Trans ; 49(29): 10114-10119, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32662477

ABSTRACT

Nucleophilic aromatic substitution (SNAr) of fluorobenzene by morpholine at a bis(diphenylphosphino)pentane-supported ruthenim complex is investigated as a model system for π-arene catalysis through the synthesis and full characterization of proposed intermediates. The SNAr step proceeds quickly at room temperature, however the product N-phenylmorpholine binds tightly to the ruthenium ion. In the case examined, the thermodynamics of arene binding favor product N-phenylmorpholine over fluorobenzene binding by a factor of 2000, corresponding to significant product inhibition. Observations of the catalyst resting state support this hypothesis and demonstrate an additive-controlled role for a previously-proposed ligand cyclometalation.

SELECTION OF CITATIONS
SEARCH DETAIL
...