Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37066413

ABSTRACT

Although river ecosystems comprise less than 1% of Earth's total non-glaciated area, they are critical modulators of microbially and virally orchestrated global biogeochemical cycles. However, most studies either use data that is not spatially resolved or is collected at timepoints that do not reflect the short life cycles of microorganisms. As a result, the relevance of microbiome interactions and the impacts they have over time on biogeochemical cycles are poorly understood. To assess how viral and microbial communities change over time, we sampled surface water and pore water compartments of the wastewater-impacted River Erpe in Germany every 3 hours over a 48-hour period resulting in 32 metagenomes paired to geochemical and metabolite measurements. We reconstructed 6,500 viral and 1,033 microbial genomes and found distinct communities associated with each river compartment. We show that 17% of our vMAGs clustered to viruses from other ecosystems like wastewater treatment plants and rivers. Our results also indicated that 70% of the viral community was persistent in surface waters, whereas only 13% were persistent in the pore waters taken from the hyporheic zone. Finally, we predicted linkages between 73 viral genomes and 38 microbial genomes. These putatively linked hosts included members of the Competibacteraceae, which we suggest are potential contributors to carbon and nitrogen cycling. Together, these findings demonstrate that microbial and viral communities in surface waters of this urban river can exist as stable communities along a flowing river; and raise important considerations for ecosystem models attempting to constrain dynamics of river biogeochemical cycles.

2.
Sci Rep ; 11(1): 4179, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33603043

ABSTRACT

Trace organic compounds (TrOCs) enter rivers with discharge of treated wastewater. These effluents can contain high loads of dissolved organic matter (DOM). In a 48 h field study, we investigated changes in molecular composition of seven DOM compound classes (FTICR-MS) and attenuation of 17 polar TrOCs in a small urban stream receiving treated wastewater. Correlations between TrOCs and DOM were used to identify simultaneous changes in surface water and the hyporheic zone. Changes in TrOC concentrations in surface water ranged between a decrease of 29.2% for methylbenzotriazole and an increase of 152.2% for the transformation product gabapentin-lactam. In the hyporheic zone, only decreasing TrOC concentrations were observed, ranging from 4.9% for primidone to 93.8% for venlafaxine . TrOC attenuation coincided with a decline of molecular diversity of easily biodegradable DOM compound classes while molecular diversity of poorly biodegradable DOM compound classes increased. This concurrence indicates similar or linked attenuation pathways for biodegradable DOM and TrOCs. Strong correlations between TrOCs and DOM compound classes as well as high attenuation of TrOCs primarily occurred in the hyporheic zone. This suggests high potential for DOM turnover and TrOC mitigation in rivers if hyporheic exchange is sufficient.

3.
Inorg Chem ; 55(12): 5999-6009, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27276103

ABSTRACT

One mole equivalent of gaseous SO2 is absorbed by purple TDAE[O2SSO2](s), producing red, essentially spectroscopically pure TDAE[O2SS(O)2SO2](s); under prolonged evacuation, the product loses SO2(g), regenerating TDAE[O2SSO2](s). Similarly, [NR4]2[O2SS(O)2SO2](s) (R = Et, Me) can be prepared, albeit at lower purity, from the corresponding tetraalkylammonium dithionites (prepared by a modification of the known [NEt4]2[O2SSO2](s) preparation). While the [NEt4](+) salt is stable at rt; the [NMe4](+) salt has only limited stability at -78 °C. Vibrational spectra assignments for the anion in these salts were distinctly different from those for the anion in salts containing the long-known [O3SSSO3](2-) dianion, the most thermodynamically stable form of [S3O6](2-) (we prepared TDAE[O3SSSO3]·H2O(s) and obtained its structure by X-ray diffraction and vibrational analyses). The best fit between the calculated ((B3PW91/6-311+G(3df) and PBE0/6-311G(d)) and experimental vibrational spectra were obtained with the dianion having the [O2SS(O)2SO2](2-) structure. Vibrational analyses of the three [O2SS(O)2SO2](2-) salts prepared in this work showed that the corresponding [O3SSO2](2-) salts were present as a ubiquitous decomposition product. The formation of these new [O2SS(O)2SO2](2-) dianion salts was predicted to be favorable for [NMe4](+) and larger cations using a combination of theoretical calculations (B3PW91/6-311+G(3df)) and volume based thermodynamics (VBT). Similar methods accounted for the greater stabilities of the TDAE(2+) and [NEt4](+) salts of [O2SS(O)2SO2](2-) compared to [NMe4]2[O2SS(O)2SO2](s) toward irreversible decomposition to the corresponding [O3SSO2](2-) salts. These salts represent the first known examples of a new class of poly(sulfur dioxide) dianion, [SO2]n(2-) in which n > 2.

4.
Radiother Oncol ; 118(3): 515-20, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26830694

ABSTRACT

PURPOSE: In this planning study, we studied the benefit of intensity-modulated radiation therapy (IMRT) with multi-criteria optimization (MCO) in locally advanced non-small cell lung carcinoma (NSCLC). METHODS: We selected 10 consecutive patients with gross tumor within 1cm of the esophagus eligible for RTOG 1308, randomized phase II trial of 70 Gy protons vs photons. Planning was performed per protocol. In addition, a novel approach for esophagus sparing was applied by making the contralateral esophagus (CE) an avoidance structure. MCO and non-MCO plans underwent double-blinded review. Plan differences in dose-volume histogram parameters were analyzed. RESULTS: Median plan differences were mean lung dose=0.8 Gy (p=0.01), lung V20=1.1% (p=0.06), heart V30=1.0% (p=0.03), heart V45=0.6% (p=0.03), esophagus V60=1.2% (p=0.04), and CE V45=3.2% (p=0.01), all favoring MCO over non-MCO. PTV coverage with 95% dose was ⩾98.0% for both plans. There were 5 minor protocol deviations with non-MCO plans and 2 with MCO. Median improvement of active planning time with MCO was 88 min (p<0.01). Physicians preferred 8 MCO and 2 non-MCO plans (p=0.04). CONCLUSIONS: MCO plans yielded significant improvements in organ-at-risk sparing without compromising target coverage, consumed less dosimetrist time, and were preferred by physicians. We suggest incorporating MCO into prospective clinical trials.


Subject(s)
Carcinoma, Non-Small-Cell Lung/radiotherapy , Esophagus/radiation effects , Lung Neoplasms/radiotherapy , Radiation Injuries/prevention & control , Radiotherapy Planning, Computer-Assisted/methods , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/pathology , Esophagus/anatomy & histology , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Prospective Studies , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods
5.
Inorg Chem ; 52(23): 13651-62, 2013 Dec 02.
Article in English | MEDLINE | ID: mdl-24228766

ABSTRACT

Gaseous SO2 reacts with tetrakis(dimethylamino)ethylene (TDAE) in acetonitrile in a 2:1 stoichiometric ratio to give analytically pure insoluble purple (TDAE)(O2SSO2) (1) in about 80% yield. Crystals of (TDAE)(O2SSSSO2) (2) were obtained from orange solution over the purple solid. The Raman spectrum of [TDAE](2+) was established using (TDAE)(A) salts [A = 2Br(-), 2Br(-)·2H2O (X-ray), 2[Br3](-) (X-ray)]. Vibrational spectroscopy showed that [O2SSO2](2-) in 1 has C2h geometry. The X-ray structure of 2 showed that it contained [O2SSSSO2](2-), the first example of a new class of sulfur oxyanions, the polythionites. The geometry of [O2SSSSO2](2-) consists of S2 with an S-S bond length of 2.003(1) Å connected to two terminal SO2 moieties by much longer S-S bonds of 2.337(1) Å. Calculations (B3PW91/6-311+G(3df)) show that the structural units in [O2SSSSO2](2-) are joined by the interaction of electrons in two mutually perpendicular π* SOMOs of the triplet-state diradical S2 with unpaired electrons in the π*-antibonding orbitals of the two terminal [SO2](•-) and polarized to delocalize the negative charge equally onto the three fragments. Thermodynamic estimates show 2 to be stable with respect to loss of sulfur and formation of 1, in contrast to [O2SSSSO2](2-) salts of small cations that are unstable toward the related dissociation. Reaction of TDAE with an excess of liquid SO2 led to (TDAE)(O3SOSO3)·SO2 (preliminary X-ray, Raman), (TDAE)(O3SSSSO3)·2SO2 (preliminary X-ray, Raman), and (TDAE)(O3SSO2) (Raman).

6.
Dalton Trans ; (33): 4424-7, 2008 Sep 07.
Article in English | MEDLINE | ID: mdl-18698444

ABSTRACT

One electron oxidation of dialkyl diselenides and ditellurides is achieved with NO(+)CF(3)SO(3)(-). According to ab initio calculations the radical cations have a trans stucture. In the solid state they dimerize to rectangular units [R-Te](4)(2+) and [R-Se](4)(2+). The long SeSe and TeTe bond is obviously due to a pi*-pi* interaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...