Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(3): e0120434, 2015.
Article in English | MEDLINE | ID: mdl-25793728

ABSTRACT

In the absence of antiretroviral therapy, infection with human immunodeficiency virus type 1 (HIV-1) can typically not be controlled by the infected host and results in the development of acquired immunodeficiency. In rare cases, however, patients spontaneously control HIV-1 replication. Mechanisms by which such elite controllers (ECs) achieve control of HIV-1 replication include particularly efficient immune responses as well as reduced fitness of the specific virus strains. To address whether polymorphisms in the accessory HIV-1 protein Vpu are associated with EC status we functionally analyzed a panel of plasma-derived vpu alleles from 15 EC and 16 chronic progressor (CP) patients. Antagonism of the HIV particle release restriction by the intrinsic immunity factor CD317/tetherin was well conserved among EC and CP Vpu alleles, underscoring the selective advantage of this Vpu function in HIV-1 infected individuals. In contrast, interference with CD317/tetherin induced NF-κB activation was little conserved in both groups. EC Vpus more frequently displayed reduced ability to downregulate cell surface levels of CD4 and MHC class I (MHC-I) molecules as well as of the NK cell ligand NTB-A. Polymorphisms potentially associated with high affinity interactions of the inhibitory killer immunoglobulin-like receptor (KIR) KIR2DL2 were significantly enriched among EC Vpus but did not account for these functional differences. Together these results suggest that in a subgroup of EC patients, some Vpu functions are modestly reduced, possibly as a result of host selection.


Subject(s)
Alleles , HIV Infections/blood , HIV Infections/virology , HIV-1/genetics , Human Immunodeficiency Virus Proteins/genetics , Viral Regulatory and Accessory Proteins/genetics , Amino Acid Sequence , CD4 Antigens/metabolism , Cell Membrane/metabolism , Conserved Sequence , Disease Progression , Down-Regulation/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Histocompatibility Antigens Class I/metabolism , Human Immunodeficiency Virus Proteins/chemistry , Humans , Likelihood Functions , Molecular Sequence Data , NF-kappa B/metabolism , Phylogeny , RNA, Viral/blood , Sequence Analysis, Protein , Signal Transduction , Viral Regulatory and Accessory Proteins/chemistry
2.
J Virol ; 88(21): 12422-37, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25122793

ABSTRACT

UNLABELLED: The assembly of infectious hepatitis C virus (HCV) particles is tightly linked to components of the very-low-density lipoprotein (VLDL) pathway. We and others have shown that apolipoprotein E (ApoE) plays a major role in production of infectious HCV particles. However, the mechanism by which ApoE contributes to virion assembly/release and how it gets associated with the HCV particle is poorly understood. We found that knockdown of ApoE reduces titers of infectious intra- and extracellular HCV but not of the related dengue virus. ApoE depletion also reduced amounts of extracellular HCV core protein without affecting intracellular core amounts. Moreover, we found that ApoE depletion affected neither formation of nucleocapsids nor their envelopment, suggesting that ApoE acts at a late step of assembly, such as particle maturation and infectivity. Importantly, we demonstrate that ApoE interacts with the HCV envelope glycoproteins, most notably E2. This interaction did not require any other viral proteins and depended on the transmembrane domain of E2 that also was required for recruitment of HCV envelope glycoproteins to detergent-resistant membrane fractions. These results suggest that ApoE plays an important role in HCV particle maturation, presumably by direct interaction with viral envelope glycoproteins. IMPORTANCE: The HCV replication cycle is tightly linked to host cell lipid pathways and components. This is best illustrated by the dependency of HCV assembly on lipid droplets and the VLDL component ApoE. Although the role of ApoE for production of infectious HCV particles is well established, it is still poorly understood how ApoE contributes to virion formation and how it gets associated with HCV particles. Here, we provide experimental evidence that ApoE likely is required for an intracellular maturation step of HCV particles. Moreover, we demonstrate that ApoE associates with the viral envelope glycoproteins. This interaction appears to be dispensable for envelopment of virus particles but likely contributes to the quality control of secreted infectious virions. These results shed new light on the exploitation of host cell lipid pathways by HCV and the link of viral particle assembly to the VLDL component ApoE.


Subject(s)
Apolipoproteins E/metabolism , Hepacivirus/physiology , Host-Pathogen Interactions , Viral Envelope Proteins/metabolism , Virus Assembly , Cell Line , Humans , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...