Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 9(40): 26072-26085, 2018 May 25.
Article in English | MEDLINE | ID: mdl-29899843

ABSTRACT

Resistance to chemotherapy is a major cause of treatment failure and poor overall survival in patients with lung cancer. Identification of molecular targets present in resistant cancer cells is essential for addressing therapeutic resistance and prolonging lung cancer patient survival. Members of the B-cell lymphoma 2 (Bcl-2) family of proteins are associated with chemotherapeutic resistance. In this study, we found that pro-survival protein Bcl-2 is upregulated in paclitaxel resistant cells, potentially contributing to chemotherapy resistance. To exploit the increase in Bcl-2 expression for targeting therapy resistance, we investigated the effects of a peptide derived from the nuclear receptor Nur77 that converts Bcl-2 from an anti-apoptotic protein to a pro-apoptotic protein. The Nur77 derived peptide preferentially induced apoptosis in paclitaxel-resistant cancer cells with high expression of Bcl-2. This peptide also induced apoptosis of multidrug resistant H69AR lung cancer cells that express Bcl-2 and inhibited their growth in 3D spheroids. The Nur77 peptide strongly suppressed the growth of paclitaxel-resistant lung cancer cells in a zebrafish xenograft tumor model. Taken together, our data supports a new strategy for treating lung cancers that acquire resistance to chemotherapy through overexpression of Bcl-2.

2.
Biology (Basel) ; 6(4)2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29194351

ABSTRACT

We previously reported that raloxifene, an estrogen receptor modulator, is also a ligand for the aryl hydrocarbon receptor (AhR). Raloxifene induces apoptosis in estrogen receptor-negative human cancer cells through the AhR. We performed structure-activity studies with seven raloxifene analogs to better understand the structural requirements of raloxifene for induction of AhR-mediated transcriptional activity and apoptosis. We identified Y134 as a raloxifene analog that activates AhR-mediated transcriptional activity and induces apoptosis in MDA-MB-231 human triple negative breast cancer cells. Suppression of AhR expression strongly reduced apoptosis induced by Y134, indicating the requirement of AhR for Y134-induced apoptosis. Y134 also induced apoptosis in hepatoma cells without having an effect on cell cycle regulation. Toxicity testing on zebrafish embryos revealed that Y134 has a significantly better safety profile than raloxifene. Our studies also identified an analog of raloxifene that acts as a partial antagonist of the AhR, and is capable of inhibiting AhR agonist-induced transcriptional activity. We conclude that Y134 is a promising raloxifene analog for further optimization as an anti-cancer agent targeting the AhR.

SELECTION OF CITATIONS
SEARCH DETAIL
...