Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Sci ; 102: 1-13, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28235611

ABSTRACT

The present work aimed to describe the current status of IVIVC/IVIVR development in the pharmaceutical industry, focusing on the use and perception of specific approaches as well as successful and failed case studies. Two questionnaires have been distributed to 13 EFPIA partners of the Oral Biopharmaceutics Tools Initiative and to the Pharmacokinetics Working Party of the European Medicines Agency in order to capture the perspectives and experiences of industry scientists and agency members, respectively. Responses from ten companies and three European Agencies were received between May 21st 2014 and January 19th 2016. The majority of the companies acknowledged the importance of IVIVC/IVIVR throughout the drug development stages and a well-balanced rate of return on investment. However, the IVIVC/IVIVR approach seemed to be underutilized in regulatory submissions. Four of the ten companies stated to have an internal guidance related to IVIVC/IVIVR modelling, whereas three felt that an overall strategy is not necessary. Successful models mainly served to support formulation development and to provide a better mechanistic understanding. There was not yet much experience with safe-space IVIVRs as well as the use of physiologically based modelling in the field of IVIVC. At the same time, the responses from both industry and agencies indicated that there might be a need for a regulatory framework to guide the application of these novel approaches. The relevance of IVIVC/IVIVR for oral IR drug products was recognized by most of the companies. For IR formulations, relationships other than Level A correlation were more common outcomes among the provided case studies, such as multiple Level C correlation or safe-space IVIVR, which could be successfully used for requesting regulatory flexibility. Compared to the responses from industry scientists, there was a trend towards a higher appreciation of the BCS among the regulators, but a less positive attitude towards the utility of non-compendial dissolution methods for establishing a successful IVIVC/IVIVR. The lack of appropriate in vivo data and regulatory uncertainty were considered the major difficulties in IVIVC/IVIVR development. The results of this survey provide unique insights into current IVIVC/IVIVR practices in the pharmaceutical industry. Pursuing an IVIVC/IVIVR should be generally encouraged, considering its high value from both industry and regulators' perspective.


Subject(s)
Drug Discovery , Drug Industry , Models, Biological , Animals , Humans , Pharmacokinetics , Surveys and Questionnaires
2.
Eur J Pharm Sci ; 57: 292-9, 2014 Jun 16.
Article in English | MEDLINE | ID: mdl-24189462

ABSTRACT

OrBiTo is a new European project within the IMI programme in the area of oral biopharmaceutics tools that includes world leading scientists from nine European universities, one regulatory agency, one non-profit research organization, four SMEs together with scientists from twelve pharmaceutical companies. The OrBiTo project will address key gaps in our knowledge of gastrointestinal (GI) drug absorption and deliver a framework for rational application of predictive biopharmaceutics tools for oral drug delivery. This will be achieved through novel prospective investigations to define new methodologies as well as refinement of existing tools. Extensive validation of novel and existing biopharmaceutics tools will be performed using active pharmaceutical ingredient (API), formulations and supporting datasets from industry partners. A combination of high quality in vitro or in silico characterizations of API and formulations will be integrated into physiologically based in silico biopharmaceutics models capturing the full complexity of GI drug absorption. This approach gives an unparalleled opportunity to initiate a transformational change in industrial research and development to achieve model-based pharmaceutical product development in accordance with the Quality by Design concept. Benefits include an accelerated and more efficient drug candidate selection, formulation development process, particularly for challenging projects such as low solubility molecules (BCS II and IV), enhanced and modified-release formulations, as well as allowing optimization of clinical product performance for patient benefit. In addition, the tools emerging from OrBiTo are expected to significantly reduce demand for animal experiments in the future as well as reducing the number of human bioequivalence studies required to bridge formulations after manufacturing or composition changes.


Subject(s)
Biopharmaceutics/methods , Gastrointestinal Tract/metabolism , Intestinal Absorption , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/metabolism , Pharmacokinetics , Administration, Oral , Animals , Chemistry, Pharmaceutical , Computer Simulation , Dosage Forms , Humans , Models, Biological , Permeability , Pharmaceutical Preparations/chemistry , Program Development , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...