Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Public Health ; 5: 33, 2017.
Article in English | MEDLINE | ID: mdl-28303239

ABSTRACT

INTRODUCTION: Western Area (WA) of Sierra Leone including the capital, Freetown, experienced an unprecedented outbreak of Ebola from 2014 to 2015. At the onset of the epidemic, there was little information about the epidemiology, transmission dynamics, and risk factors in urban settings as previous outbreaks were limited to rural/semi-rural settings. This study, therefore, aimed to describe the epidemiology of the outbreak and the factors which had most impact on the transmission of the epidemic and whether there were different drivers from those previously described in rural settings. METHODS: We conducted a descriptive epidemiology study in WA, Sierra Leone using secondary data from the National Ebola outbreak database. We also reviewed the Ebola situation reports, response strategy documents, and other useful documents. RESULTS: A total of 4,955 Ebola cases were identified between June 2014 and November 2015, although there were reports of cases occurring in WA toward end of May. All wards were affected, and Waterloo Area I (Ward 330), the capital city of Western Area Rural District, recorded the highest numbers of cases (580) and deaths (236). Majority of cases (63.4%) and deaths (66.8%) were in WA Urban District (WAU); 44 cases were imported from other provinces. Only 20% of cases had a history of contact with an Ebola case, and more than 30% were death alerts. Equal numbers of males and females were infected, and very few cases (3.2%) were health workers. Overall, transmission was through contact with infected individuals, and intense transmission occurred at the community level. In WAU, transmission was mostly between neighbors and among inhabitants of shared accommodations. The drivers of transmission included high population movement to and from WA, overcrowding, fear and lack of trust in the response, and negative community behaviors. Transmission was mostly through contact and with limited transmission through sex and breast milk. CONCLUSION: The unprecedented outbreak in WA was attributed to delayed detection, inadequate preparedness and response, intense population movements, overcrowding, and unresponsive communities. Anticipation, strengthening preparedness for early detection, and swift and effective response remains critical in mitigating a potential urban explosion of similar future outbreaks.

2.
BMC Public Health ; 13: 202, 2013 Mar 07.
Article in English | MEDLINE | ID: mdl-23497254

ABSTRACT

BACKGROUND: Following an outbreak of yellow fever in northern Uganda in December 2010, Ministry of Health conducted a massive emergency vaccination campaign in January 2011. The reported vaccination coverage in Pader District was 75.9%. Administrative coverage though timely, is affected by incorrect population estimates and over or under reporting of vaccination doses administered. This paper presents the validated yellow fever vaccination coverage following massive emergency immunization campaigns in Pader district. METHODS: A cross sectional cluster survey was carried out in May 2011 among communities in Pader district and 680 respondents were indentified using the modified World Health Organization (WHO) 40 × 17 cluster survey sampling methodology. Respondents were aged nine months and above. Interviewer administered questionnaires were used to collect data on demographic characteristics, vaccination status and reasons for none vaccination. Vaccination status was assessed using self reports and vaccination card evidence. Our main outcomes were measures of yellow fever vaccination coverage in each age-specific stratum, overall, and disaggregated by age and sex, adjusting for the clustered design and the size of the population in each stratum. RESULTS: Of the 680 survey respondents, 654 (96.1%, 95% CI 94.9 - 97.8) reported being vaccinated during the last campaign but only 353 (51.6%, 95% CI 47.2 - 56.1) had valid yellow fever vaccination cards. Of the 280 children below 5 years, 269 (96.1%, 95% CI 93.7 - 98.7) were vaccinated and nearly all males 299 (96.9%, 95% CI 94.3 - 99.5) were vaccinated. The main reasons for none vaccination were; having travelled out of Pader district during the campaign period (40.0%), lack of transport to immunization posts (28.0%) and, sickness at the time of vaccination (16.0%). CONCLUSIONS: Our results show that actual yellow fever vaccination coverage was high and satisfactory in Pader district since it was above the desired minimum threshold coverage of 80% according to World Health Organization. Massive emergency vaccination done following an outbreak of Yellow fever achieved high population coverage in Pader district. Active surveillance is necessary for early detection of yellow fever cases.


Subject(s)
Disease Outbreaks/prevention & control , Health Promotion , Mass Vaccination/statistics & numerical data , Rural Population , Yellow Fever Vaccine/administration & dosage , Yellow Fever/prevention & control , Adolescent , Child , Child, Preschool , Cluster Analysis , Cross-Sectional Studies , Female , Humans , Infant , Male , Program Evaluation , Rural Population/statistics & numerical data , Uganda/epidemiology , Yellow Fever/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...