Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Childs Nerv Syst ; 40(5): 1331-1337, 2024 May.
Article in English | MEDLINE | ID: mdl-38451299

ABSTRACT

PURPOSE: Stereoelectroencephalography (SEEG) is a diagnostic surgery that implants electrodes to identify areas of epileptic onset in patients with drug-resistant epilepsy (DRE). SEEG is effective in identifying the epileptic zone; however, placement of electrodes in very young children has been considered contraindicated due to skull thinness. The goal of this study was to evaluate if SEEG is safe and accurate in young children with thin skulls. METHODS: Four children under the age of two years old with DRE underwent SEEG to locate the region of seizure onset. Presurgical planning and placement of electrodes were performed using ROSA One Brain. Preoperative electrode plans were merged with postoperative CT scans to determine accuracy. Euclidean distance between the planned and actual trajectories was calculated using a 3D coordinate system at both the entry and target points for each electrode. RESULTS: Sixty-three electrodes were placed among four patients. Mean skull thickness at electrode entry sites was 2.34 mm. The mean difference between the planned and actual entry points was 1.12 mm, and the mean difference between the planned and actual target points was 1.73 mm. No significant correlation was observed between planned and actual target points and skull thickness (Pearson R = - 0.170). No perioperative or postoperative complications were observed. CONCLUSIONS: This study demonstrates that SEEG can be safe and accurate in children under two years of age despite thin skulls. SEEG should be considered for young children with DRE, and age and skull thickness are not definite contraindications to the surgery.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Child , Humans , Infant , Child, Preschool , Feasibility Studies , Electroencephalography , Electrodes, Implanted , Stereotaxic Techniques , Drug Resistant Epilepsy/surgery , Epilepsy/surgery , Retrospective Studies
2.
Epilepsia Open ; 9(2): 785-792, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38421143

ABSTRACT

Neuromodulation via Responsive Neurostimulation (RNS) or Deep Brain Stimulation (DBS) is an emerging treatment strategy for pediatric drug-resistant epilepsy (DRE). Knowledge gaps exist in patient selection, surgical technique, and perioperative care. Here, we use an expert survey to clarify practices. Thirty-two members of the Pediatric Epilepsy Research Consortium were surveyed using REDCap. Respondents were from 17 pediatric epilepsy centers (missing data in one): Four centers implant RNS only while 13 implant both RNS and DBS. Thirteen RNS programs commenced in or before 2020, and 10 of 12 DBS programs began thereafter. The busiest six centers implant 6-10 new RNS devices per year; all DBS programs implant <5 annually. The youngest RNS patient was 3 years old. Most centers (11/12) utilize MP2RAGE and/or FGATIR sequences for planning. Centromedian thalamic nuclei were the unanimous target for Lennox-Gastaut syndrome. Surgeon exposure to neuromodulation occurred mostly in clinical practice (14/17). Clinically significant hemorrhage (n = 2) or infection (n = 3) were rare. Meaningful seizure reduction (>50%) was reported by 81% (13/16) of centers. RNS and DBS are rapidly evolving treatment modalities for safe and effective treatment of pediatric DRE. There is increasing interest in multicenter collaboration to gain knowledge and facilitate dialogue. PLAIN LANGUAGE SUMMARY: We surveyed 32 pediatric epilepsy centers in USA to highlight current practices of intracranial neuromodulation. Of the 17 that replied, we found that most centers are implanting thalamic targets in pediatric drug-resistant epilepsy using the RNS device. DBS device is starting to be used in pediatric epilepsy, especially after 2020. Different strategies for target identification are enumerated. This study serves as a starting point for future collaborative research.


Subject(s)
Deep Brain Stimulation , Drug Resistant Epilepsy , Epilepsy , Intralaminar Thalamic Nuclei , Humans , Child , Child, Preschool , Deep Brain Stimulation/methods , Epilepsy/therapy , Drug Resistant Epilepsy/therapy , Seizures/therapy
3.
Neurology ; 102(4): e208087, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38306606

ABSTRACT

The National Association of Epilepsy Centers first published the guidelines for epilepsy centers in 1990, which were last updated in 2010. Since that update, epilepsy care and the science of guideline development have advanced significantly, including the importance of incorporating a diversity of stakeholder perspectives such as those of patients and their caregivers. Currently, despite extensive published data examining the efficacy of treatments and diagnostic testing for epilepsy, there remain significant gaps in data identifying the essential services needed for a comprehensive epilepsy center and the optimal manner for their delivery. The trustworthy consensus-based statements (TCBS) process produces unbiased, scientifically valid guidelines through a transparent process that incorporates available evidence and expert opinion. A systematic literature search returned 5937 relevant studies from which 197 articles were retained for data extraction. A panel of 41 stakeholders with diverse expertise evaluated this evidence and drafted recommendations following the TCBS process. The panel reached consensus on 52 recommendations covering services provided by specialized epilepsy centers in both the inpatient and outpatient settings in major topic areas including epilepsy monitoring unit care, surgery, neuroimaging, neuropsychology, genetics, and outpatient care. Recommendations were informed by the evidence review and reflect the consensus of a broad panel of expert opinions.


Subject(s)
Epilepsy , Humans , Consensus , Epilepsy/diagnosis , Epilepsy/therapy , Neuroimaging
4.
J Neurosurg Case Lessons ; 6(22)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38011695

ABSTRACT

BACKGROUND: Myasthenia gravis (MG) is an autoimmune disorder in which the postsynaptic acetylcholine receptor of the neuromuscular junction is destroyed by autoantibodies. The authors report a case of MG in a pediatric patient who also suffered from Lennox-Gastaut syndrome (LGS) and is one of a limited number of pediatric patients who have undergone placement of a responsive neurostimulation (RNS) device (NeuroPace). OBSERVATIONS: A 17-year-old female underwent placement of an RNS device for drug-resistant epilepsy in the setting of LGS. Five months after device placement, the patient began experiencing intermittent slurred speech, fatigue, and muscle weakness. Initially, the symptoms were attributed to increased seizure activity and/or medication side effects. However, despite changing medications and RNS settings, no improvements occurred. Her antiacetylcholine receptor antibodies measured 62.50 nmol/L, consistent with a diagnosis of MG. The patient was then prescribed pyridostigmine and underwent a thymectomy, which alleviated most of her symptoms. LESSONS: The authors share the cautionary tale of a case of MG in a pediatric patient who was treated with RNS for intractable epilepsy associated with LGS. Although slurred speech, fatigue, muscle weakness, and other symptoms might stem from increased seizure activity and/or medication side effects, they could also be due to MG development.

5.
J Neurosurg Pediatr ; : 1-14, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36883640

ABSTRACT

OBJECTIVE: The authors of this study evaluated the safety and efficacy of stereotactic laser ablation (SLA) for the treatment of drug-resistant epilepsy (DRE) in children. METHODS: Seventeen North American centers were enrolled in the study. Data for pediatric patients with DRE who had been treated with SLA between 2008 and 2018 were retrospectively reviewed. RESULTS: A total of 225 patients, mean age 12.8 ± 5.8 years, were identified. Target-of-interest (TOI) locations included extratemporal (44.4%), temporal neocortical (8.4%), mesiotemporal (23.1%), hypothalamic (14.2%), and callosal (9.8%). Visualase and NeuroBlate SLA systems were used in 199 and 26 cases, respectively. Procedure goals included ablation (149 cases), disconnection (63), or both (13). The mean follow-up was 27 ± 20.4 months. Improvement in targeted seizure type (TST) was seen in 179 (84.0%) patients. Engel classification was reported for 167 (74.2%) patients; excluding the palliative cases, 74 (49.7%), 35 (23.5%), 10 (6.7%), and 30 (20.1%) patients had Engel class I, II, III, and IV outcomes, respectively. For patients with a follow-up ≥ 12 months, 25 (51.0%), 18 (36.7%), 3 (6.1%), and 3 (6.1%) had Engel class I, II, III, and IV outcomes, respectively. Patients with a history of pre-SLA surgery related to the TOI, a pathology of malformation of cortical development, and 2+ trajectories per TOI were more likely to experience no improvement in seizure frequency and/or to have an unfavorable outcome. A greater number of smaller thermal lesions was associated with greater improvement in TST. Thirty (13.3%) patients experienced 51 short-term complications including malpositioned catheter (3 cases), intracranial hemorrhage (2), transient neurological deficit (19), permanent neurological deficit (3), symptomatic perilesional edema (6), hydrocephalus (1), CSF leakage (1), wound infection (2), unplanned ICU stay (5), and unplanned 30-day readmission (9). The relative incidence of complications was higher in the hypothalamic target location. Target volume, number of laser trajectories, number or size of thermal lesions, or use of perioperative steroids did not have a significant effect on short-term complications. CONCLUSIONS: SLA appears to be an effective and well-tolerated treatment option for children with DRE. Large-volume prospective studies are needed to better understand the indications for treatment and demonstrate the long-term efficacy of SLA in this population.

6.
J Neurosurg Pediatr ; 31(6): 565-573, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36933267

ABSTRACT

OBJECTIVE: The aim of this study was to assess the safety and efficacy of combined active responsive neurostimulation (RNS) and vagus nerve stimulation (VNS) therapies in pediatric patients with drug-resistant epilepsy. METHODS: A single-center retrospective chart review was conducted on pediatric patients implanted with the RNS System with a concomitant active VNS System (VNS+RNS) between 2015 and 2021. Patients with at least 1 month of overlapping concomitant VNS and RNS treatment were included. Patients who had an RNS device implanted after 21 years of age, those who had responsive neurostimulators implanted after their VNS was inactivated, or those in whom the VNS battery died and was not replaced before RNS System implantation were excluded. RESULTS: Seven pediatric VNS+RNS patients were identified, and their courses of treatment were evaluated. All patients tolerated concurrent VNS and RNS treatment well, no device-device interactions were identified, and no major treatment-related adverse effects were noted. The median follow-up after RNS System implantation was 1.2 years. By electroclinical criteria, all 7 patients achieved 75%-99% reductions in the frequency of disabling seizures after RNS System implantation. By patient and caregiver report, 2 patients (28.6%) had 75%-99% reductions in the frequency of their disabling seizures, 2 patients (28.6%) achieved 50%-74% reductions, 2 patients achieved 1%-24% reduction in frequency of disabling seizures, and 1 patient (14.3%) experienced a 1%-24% increase in seizure frequency. The available VNS magnet swipe data identified 2 patients with 75%-99% reductions in seizure frequency as measured by magnet swipes, one with 25%-49% reductions and the other with 1%-24% increases in seizure frequency as measured by magnet swipes. CONCLUSIONS: This study demonstrated that RNS and VNS therapies can safely be used simultaneously in pediatric patients. RNS may potentially augment the therapeutic effects of VNS treatment. Patients in whom a response to VNS has been suboptimal should still be considered for RNS therapy.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Generalized , Vagus Nerve Stimulation , Humans , Child , Vagus Nerve Stimulation/adverse effects , Retrospective Studies , Seizures/therapy , Drug Resistant Epilepsy/therapy , Treatment Outcome , Vagus Nerve
7.
J Neurol Surg Rep ; 84(1): e26-e30, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36923100

ABSTRACT

Intraoperative neuromonitoring (IONM) has been used in neurosurgical procedures to assess patient safety and minimize risk of neurological deficit. However, its use in decompressive surgeries of Chiari malformation type I (CM-I) remains a topic of debate. Here we present the case of a 5-year-old girl who presented with acute right lower extremity monoplegia after accidental self-induced hyperflexion of the neck while playing. Imaging revealed 15 mm of tonsillar ectopia with cervical and upper thoracic spinal cord edema. She was taken to surgery for a suboccipital decompression with expansile duraplasty. IONM demonstrated improvement in motor evoked potentials during the decompression. Postoperatively, she had full recovery of strength and mobility. This is a case of acute weakness after mild trauma in the setting of previously asymptomatic CM-I that showed close correlation with IONM, clinical findings, and imaging. IONM during decompressive surgery for CM-I may be useful in patients who present acutely with cervical cord edema.

8.
J Craniofac Surg ; 34(3): e275-e277, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36907922

ABSTRACT

Smaller operative exposures associated with suturectomy for craniosynostosis may result in difficulties visualizing the prematurely fused suture during surgery. The authors report cases of suturectomy for lambdoid and metopic craniosynostosis in which neuronavigation or frameless stereotaxy was used to assist with incision planning and intraoperative localization of the fused suture. In both cases, neuronavigation integrated easily and safely into established workflows and was associated with complete suture release. To our knowledge, this is the first report of applying this noninvasive technology, which does not require cranial pinning or rigid fixation, to suturectomy, and the authors demonstrate its use as an adjunct, especially for surgeons beginning in practice. Larger studies are needed to determine if neuronavigation in suturectomy is associated with a clinically significant reduction in blood loss or operative time or an increase in the rate of complete suturectomy.


Subject(s)
Craniosynostoses , Neuronavigation , Humans , Retrospective Studies , Treatment Outcome , Craniosynostoses/diagnostic imaging , Craniosynostoses/surgery , Skull/surgery , Cranial Sutures/surgery
9.
Cardiol Rev ; 31(4): 199-206, 2023.
Article in English | MEDLINE | ID: mdl-36576377

ABSTRACT

We report the first quantitative systematic review of cerebrovascular disease in coronavirus disease 2019 (COVID-19) to provide occurrence rates and associated mortality. Through a comprehensive search of PubMed we identified 8 cohort studies, 5 case series, and 2 case reports of acute cerebrovascular disease in patients with confirmed COVID-19 diagnosis. Our first meta-analysis utilizing the identified publications focused on comorbid cerebrovascular disease in recovered and deceased patients with COVID-19. We performed 3 additional meta-analyses of proportions to produce point estimates of the mortality and incidence of acute cerebrovascular disease in COVID-19 patients. Patient's with COVID-19 who died were 12.6 times more likely to have a history of cerebrovascular disease. We estimated an occurrence rate of 2.6% (95% confidence interval, 1.2-5.4%) for acute cerebrovascular disease among consecutively admitted patients with COVID-19. While for those with severe COVID-19' we estimated an occurrence rate of 6.5% (95% confidence interval, 4.4-9.6%). Our analysis estimated a rate of 35.5% for in-hospital mortality among COVID-19 patients with concomitant acute cerebrovascular disease. This was consistent with a mortality rate of 34.0% which we obtained through an individual patient analysis of 47 patients derived from all available case reports and case series. COVID-19 patients with either acute or chronic cerebrovascular disease have a high mortality rate with higher occurrence of cerebrovascular disease in patients with severe COVID-19.


Subject(s)
COVID-19 , Cerebrovascular Disorders , Humans , Cerebrovascular Disorders/epidemiology , Cerebrovascular Disorders/diagnosis , COVID-19/complications , COVID-19/epidemiology , COVID-19 Testing , Risk Factors , SARS-CoV-2
10.
Plast Reconstr Surg Glob Open ; 10(10): e4526, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36262683

ABSTRACT

This study aimed to compare operative time, blood loss, and transfusion requirement in patients receiving a high tranexamic acid (TXA) dose of greater than 10 mg/kg versus those receiving a low dose of 10 mg/kg or less. Methods: PubMed, Cochrane Central, and Embase were queried to perform a systematic review with meta-analysis. Studies reporting outcomes of TXA use in craniosynostosis surgery were included. TXA dosing, operative time, blood loss, and transfusion requirement were the primary outcomes studied. Other variables studied included age and types of craniosynostosis. Results: In total, 398 individuals in the included articles received TXA for craniosynostosis surgery. TXA loading doses ranged from 10 mg/kg to 50 mg/kg. Overall, administration of TXA was not associated with changes in operative time, but was associated with decreased blood loss and transfusion requirement on meta-analysis. Comparison of high dose TXA (>10 mg/kg) versus low dose (10 mg/kg or less) showed no statistical differences in changes in operative time, blood loss, or transfusion requirement. Conclusions: Overall, TXA reduced blood loss and transfusion requirement in patients undergoing surgery for craniosynostosis. There was no difference in outcomes between high dose and low dose regimens amongst those receiving TXA. Low dose TXA appears adequate to achieve clinical efficacy with a low adverse event rate.

11.
Front Hum Neurosci ; 16: 876204, 2022.
Article in English | MEDLINE | ID: mdl-35496067

ABSTRACT

Background: Responsive neurostimulation (RNS System) has been utilized as a treatment for intractable epilepsy. The RNS System delivers stimulation in response to detected abnormal activity, via leads covering the seizure foci, in response to detections of predefined epileptiform activity with the goal of decreasing seizure frequency and severity. While thalamic leads are often implanted in combination with cortical strip leads, implantation and stimulation with bilateral thalamic leads alone is less common, and the ability to detect electrographic seizures using RNS System thalamic leads is uncertain. Objective: The present study retrospectively evaluated fourteen patients with RNS System depth leads implanted in the thalamus, with or without concomitant implantation of cortical strip leads, to determine the ability to detect electrographic seizures in the thalamus. Detailed patient presentations and lead trajectories were reviewed alongside electroencephalographic (ECoG) analyses. Results: Anterior nucleus thalamic (ANT) leads, whether bilateral or unilateral and combined with a cortical strip lead, successfully detected and terminated epileptiform activity, as demonstrated by Cases 2 and 3. Similarly, bilateral centromedian thalamic (CMT) leads or a combination of one centromedian thalamic alongside a cortical strip lead also demonstrated the ability to detect electrographic seizures as seen in Cases 6 and 9. Bilateral pulvinar leads likewise produced reliable seizure detection in Patient 14. Detections of electrographic seizures in thalamic nuclei did not appear to be affected by whether the patient was pediatric or adult at the time of RNS System implantation. Sole thalamic leads paralleled the combination of thalamic and cortical strip leads in terms of preventing the propagation of electrographic seizures. Conclusion: Thalamic nuclei present a promising target for detection and stimulation via the RNS System for seizures with multifocal or generalized onsets. These areas provide a modifiable, reversible therapeutic option for patients who are not candidates for surgical resection or ablation.

12.
Stroke ; 53(5): 1530-1539, 2022 05.
Article in English | MEDLINE | ID: mdl-35272483

ABSTRACT

BACKGROUND: Evidence regarding the utilization and outcomes of endovascular thrombectomy (EVT) for pediatric ischemic stroke is limited, and justification for its use is largely based on extrapolation from clinical benefits observed in adults. METHODS: Weighted discharge data from the National Inpatient Sample were queried to identify pediatric patients with ischemic stroke (<18 years old) during the period of 2010 to 2019. Complex samples statistical methods were used to characterize the profiles and clinical outcomes of EVT-treated patients. Propensity adjustment was performed to address confounding by indication for EVT based on disparities in baseline characteristics between EVT-treated patients and those medically managed. RESULTS: Among 7365 pediatric patients with ischemic stroke identified, 190 (2.6%) were treated with EVT. Utilization significantly increased in the post-EVT clinical trial era (2016-2019; 1.7% versus 4.0%; P<0.001), while the use of decompressive hemicraniectomy decreased (2.8% versus 0.7%; P<0.001). On unadjusted analysis, 105 (55.3%) EVT-treated patients achieved favorable functional outcomes at discharge (home or to acute rehabilitation), while no periprocedural iatrogenic complications or instances of contrast-induced kidney injury were reported. Following propensity adjustment, EVT-treated patients demonstrated higher absolute but nonsignificant rates of favorable functional outcomes in comparison with medically managed patients (55.3% versus 52.8%; P=0.830; adjusted hazard ratio, 1.01 [95% CI, 0.51-2.03]; P=0.972 for unfavorable outcome). Among patients with baseline National Institutes of Health Stroke Scale score >11 (75th percentile of scores in cohort), EVT-treated patients trended toward higher rates of favorable functional outcomes compared with those treated medically only (71.4% versus 55.6%; P=0.146). In a subcohort assessment of EVT-treated patients, those administered preceding thrombolytic therapy (n=79, 41.6%) trended toward higher rates of favorable functional outcomes (63.3% versus 49.5%; P=0.060). CONCLUSIONS: This cross-sectional evaluation of the clinical course and short-term outcomes of pediatric patients with ischemic stroke treated with EVT demonstrates that EVT is likely a safe modality which confers high rates of favorable functional outcomes.


Subject(s)
Brain Ischemia , Endovascular Procedures , Ischemic Stroke , Stroke , Adolescent , Child , Cross-Sectional Studies , Endovascular Procedures/methods , Humans , Stroke/therapy , Thrombectomy/methods , Treatment Outcome
13.
J Neurosurg Pediatr ; 28(5): 533-543, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34388710

ABSTRACT

OBJECTIVE: Postoperative hydrocephalus occurs in one-third of children after posterior fossa tumor resection. Although models to predict the need for CSF diversion after resection exist for preoperative variables, it is unknown which postoperative variables predict the need for CSF diversion. In this study, the authors sought to determine the clinical and radiographic predictors for CSF diversion in children following posterior fossa tumor resection. METHODS: This was a retrospective cohort study involving patients ≤ 18 years of age who underwent resection of a primary posterior fossa tumor between 2000 and 2018. The primary outcome was the need for CSF diversion 6 months after surgery. Candidate predictors for CSF diversion including age, race, sex, frontal occipital horn ratio (FOHR), tumor type, tumor volume and location, transependymal edema, papilledema, presence of postoperative intraventricular blood, and residual tumor were evaluated using a best subset selection method with logistic regression. RESULTS: Of the 63 included patients, 26 (41.3%) had CSF diversion at 6 months. Patients who required CSF diversion had a higher median FOHR (0.5 vs 0.4) and a higher percentage of postoperative intraventricular blood (30.8% vs 2.7%) compared with those who did not. A 0.1-unit increase in FOHR or intraventricular blood was associated with increased odds of CSF diversion (OR 2.9 [95% CI 1.3-7.8], p = 0.02 and OR 20.2 [95% CI 2.9-423.1], p = 0.01, respectively) with an overfitting-corrected concordance index of 0.68 (95% CI 0.56-0.80). CONCLUSIONS: The preoperative FOHR and postoperative intraventricular blood were significant predictors of the need for permanent CSF diversion within 6 months after posterior fossa tumor resection in children.


Subject(s)
Hydrocephalus/cerebrospinal fluid , Hydrocephalus/diagnosis , Infratentorial Neoplasms/surgery , Child , Child, Preschool , Female , Humans , Hydrocephalus/complications , Infratentorial Neoplasms/complications , Lateral Ventricles/blood supply , Male , Postoperative Complications/surgery , Retrospective Studies , Third Ventricle/blood supply , Treatment Outcome
14.
J Neurosurg Pediatr ; 27(4): 375-381, 2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33418531

ABSTRACT

OBJECTIVE: Patients with shunted hydrocephalus often accumulate high levels of radiation over their lifetimes during evaluation of hardware integrity. Current practice involves the use of a series of conventional radiographs for this purpose. Newer low-dose EOS radiography is currently used to evaluate scoliosis but has not been explored to evaluate shunt integrity on a large scale. The goal of this study was to compare the quality of imaging using EOS low-dose radiography to conventional radiography to evaluate shunt tubing. METHODS: A retrospective chart review was performed on 57 patients who previously had both conventional radiographs and low-dose EOS images of their cerebral shunt tubing from 2000 to 2018. Patient demographics (age, sex, type of shunt tubing, primary diagnosis) were collected. Conventional radiographic images and low-dose EOS images were independently analyzed by a neurosurgeon and neuroradiologist in three categories: image quality, delineation of shunt, and distinction of shunt compared to adjacent anatomy. RESULTS: All patients had shunted hydrocephalus due to spina bifida and Chiari type II malformation. Ratings of EOS and conventional radiographic images by both raters did not differ significantly in terms of image quality (rater 1, p = 0.499; rater 2, p = 0.578) or delineation of shunt (p = 0.107 and p = 0.256). Conventional radiographic images received significantly higher ratings than EOS on the ability to distinguish the shunt versus adjacent anatomy by rater 1 (p = 0.039), but not by rater 2 (p = 0.149). The overall score of the three categories combined was not significantly different between EOS and conventional radiography (rater 1, p = 0.818; rater 2, p = 0.186). In terms of cost, an EOS image was less costly than a conventional radiography shunt series ($236-$366 and $1300-$1547, respectively). The radiation dose was also lower for EOS images, with an effective dose of 0.086-0.140 mSv compared to approximately 1.6 mSv for a similar field of view with conventional radiography. CONCLUSIONS: The image quality of low-dose EOS radiography does not significantly differ from conventional radiography for the evaluation of cerebral shunts. In addition, EOS affords a much lower radiation dose and a lower cost.


Subject(s)
Radiography/methods , Ventriculoperitoneal Shunt , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Hydrocephalus/surgery , Male , Radiation Dosage , Retrospective Studies , Young Adult
16.
SN Compr Clin Med ; 2(11): 2109-2125, 2020.
Article in English | MEDLINE | ID: mdl-33106782

ABSTRACT

Coronavirus disease 2019 (COVID-19) is associated with a high inflammatory burden that can induce severe respiratory disease among other complications; vascular and neurological damage has emerged as a key threat to COVID-19 patients. Risk of severe infection and mortality increases with age, male sex, and comorbidities including cardiovascular disease, hypertension, obesity, diabetes, and chronic pulmonary disease. We review clinical and neuroradiological findings in five patients with COVID-19 who suffered severe neurological disease and illustrate the pathological findings in a 7-year-old boy with COVID-19-induced encephalopathy whose brain tissue sample showed angiocentric mixed mononuclear inflammatory infiltrate. We summarize the structural and functional properties of the virus including the molecular processes that govern the binding to its membrane receptors and cellular entry. In addition, we review clinical and experimental evidence in patients and animal models that suggests coronaviruses enter into the central nervous system (CNS), either via the olfactory bulb or through hematogenous spread. We discuss suspected pathophysiological mechanisms including direct cellular infection and associated recruitment of immune cells and neurovirulence, at least in part, mediated by cytokine secretion. Moreover, contributing to the vascular and neurological injury, coagulopathic disorders play an important pathogenic role. We survey the molecular events that contribute to the thrombotic microangiopathy. We describe the neurological complications associated with COVID-19 with a focus on the potential mechanisms of neurovascular injury. Our thesis is that following infection, three main pathophysiological processes-inflammation, thrombosis, and vascular injury-are responsible for the neurological damage and diverse pathology seen in COVID-19 patients.

17.
J Neurosurg Pediatr ; 26(1): 13-21, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32217793

ABSTRACT

OBJECTIVE: This study aimed to assess the safety and efficacy of MR-guided stereotactic laser ablation (SLA) therapy in the treatment of pediatric brain tumors. METHODS: Data from 17 North American centers were retrospectively reviewed. Clinical, technical, and radiographic data for pediatric patients treated with SLA for a diagnosis of brain tumor from 2008 to 2016 were collected and analyzed. RESULTS: A total of 86 patients (mean age 12.2 ± 4.5 years) with 76 low-grade (I or II) and 10 high-grade (III or IV) tumors were included. Tumor location included lobar (38.4%), deep (45.3%), and cerebellar (16.3%) compartments. The mean follow-up time was 24 months (median 18 months, range 3-72 months). At the last follow-up, the volume of SLA-treated tumors had decreased in 80.6% of patients with follow-up data. Patients with high-grade tumors were more likely to have an unchanged or larger tumor size after SLA treatment than those with low-grade tumors (OR 7.49, p = 0.0364). Subsequent surgery and adjuvant treatment were not required after SLA treatment in 90.4% and 86.7% of patients, respectively. Patients with high-grade tumors were more likely to receive subsequent surgery (OR 2.25, p = 0.4957) and adjuvant treatment (OR 3.77, p = 0.1711) after SLA therapy, without reaching significance. A total of 29 acute complications in 23 patients were reported and included malpositioned catheters (n = 3), intracranial hemorrhages (n = 2), transient neurological deficits (n = 11), permanent neurological deficits (n = 5), symptomatic perilesional edema (n = 2), hydrocephalus (n = 4), and death (n = 2). On long-term follow-up, 3 patients were reported to have worsened neuropsychological test results. Pre-SLA tumor volume, tumor location, number of laser trajectories, and number of lesions created did not result in a significantly increased risk of complications; however, the odds of complications increased by 14% (OR 1.14, p = 0.0159) with every 1-cm3 increase in the volume of the lesion created. CONCLUSIONS: SLA is an effective, minimally invasive treatment option for pediatric brain tumors, although it is not without risks. Limiting the volume of the generated thermal lesion may help decrease the incidence of complications.

18.
J Neurosurg Pediatr ; : 1-10, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31703207

ABSTRACT

OBJECTIVE: To determine resection margins near eloquent tissue, electrical cortical stimulation (ECS) mapping is often used with visual naming tasks. In recent years, auditory naming tasks have been found to provide a more comprehensive map. Differences in modality-specific language sites have been found in adult patients, but there is a paucity of research on ECS language studies in pediatric patients. The goals of this study were to evaluate word-finding distinctions between visual and auditory modalities and identify which cortical subregions most often contain critical language function in a pediatric population. METHODS: Twenty-one pediatric patients with epilepsy or temporal lobe pathology underwent ECS mapping using visual (n = 21) and auditory (n = 14) tasks. Fisher's exact test was used to determine whether the frequency of errors in the stimulated trials was greater than the patient's baseline error rate for each tested modality and subregion. RESULTS: While the medial superior temporal gyrus was a common language site for both visual and auditory language (43.8% and 46.2% of patients, respectively), other subregions showed significant differences between modalities, and there was significant variability between patients. Visual language was more likely to be located in the anterior temporal lobe than was auditory language. The pediatric patients exhibited fewer parietal language sites and a larger range of sites overall than did adult patients in previously published studies. CONCLUSIONS: There was no single area critical for language in more than 50% of patients tested in either modality for which more than 1 patient was tested (n > 1), affirming that language function is plastic in the setting of dominant-hemisphere pathology. The high rates of language function throughout the left frontal, temporal, and anterior parietal regions with few areas of overlap between modalities suggest that ECS mapping with both visual and auditory testing is necessary to obtain a comprehensive language map prior to epileptic focus or tumor resection.

19.
J Neurosurg Pediatr ; : 1-9, 2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31628281

ABSTRACT

OBJECTIVE: Despite significant advances in diagnostic and surgical techniques, the surgical management of Chiari malformation type I (CM-I) with associated syringomyelia remains controversial, and the type of surgery performed is surgeon dependent. This study's goal was to determine the feasibility of a prospective, multicenter, cohort study for CM-I/syringomyelia patients and to provide pilot data that compare posterior fossa decompression and duraplasty (PFDD) with and without tonsillar reduction. METHODS: Participating centers prospectively enrolled children suffering from both CM-I and syringomyelia who were scheduled to undergo surgical decompression. Clinical data were entered into a database preoperatively and at 1-2 weeks, 3-6 months, and 1 year postoperatively. MR images were evaluated by 3 independent, blinded teams of neurosurgeons and neuroradiologists. The primary endpoint was improvement or resolution of the syrinx. RESULTS: Eight clinical sites were chosen based on the results of a published questionnaire intended to remove geographic and surgeon bias. Data from 68 patients were analyzed after exclusions, and complete clinical and imaging records were obtained for 55 and 58 individuals, respectively. There was strong agreement among the 3 radiology teams, and there was no difference in patient demographics among sites, surgeons, or surgery types. Tonsillar reduction was not associated with > 50% syrinx improvement (RR = 1.22, p = 0.39) or any syrinx improvement (RR = 1.00, p = 0.99). There were no surgical complications. CONCLUSIONS: This study demonstrated the feasibility of a prospective, multicenter surgical trial in CM-I/syringomyelia and provides pilot data indicating no discernible difference in 1-year outcomes between PFDD with and without tonsillar reduction, with power calculations for larger future studies. In addition, the study revealed important technical factors to consider when setting up future trials. The long-term sequelae of tonsillar reduction have not been addressed and would be an important consideration in future investigations.

20.
J Craniofac Surg ; 30(2): 334-338, 2019.
Article in English | MEDLINE | ID: mdl-30358747

ABSTRACT

BACKGROUND: Certain intrauterine risk factors are known to increase the risk of premature cranial suture fusion and may cause complications during birth. Some of these risk factors may be modifiable. Therefore, the authors sought to characterize the institutional patterns of prenatal risk factors and perinatal complications in nonsyndromic craniosynostosis patients compared to normal births from the surrounding area to identify areas for possible intervention or prevention. METHODS: The medical records of all infants with nonsyndromic craniosynostosis and full birth records born at Duke University Health System from 2006 to 2017 were retrospectively reviewed. Maternal comorbidities, prenatal risk factors, and perinatal complications were collected. The North Carolina State Center for Health Statistics was queried for perinatal statistics from Durham county and the Northeastern Perinatal Care Region to represent a control cohort of normal births from the same time period and region. The primary outcome investigated was the incidence of prenatal risk factors and complications at birth associated with premature fusion of cranial sutures. RESULTS: Eighty births with nonsyndromic craniosynostosis were included in this study. The majority of these patients were males (61.7%) and born via cesarean section (55.0%). Intrauterine growth restriction occurred in 10.0% and head trauma during delivery occurred in 2.5%. Twinning (14.8% vs 3.6%, P < 0.0001), cesarean births (55.5% vs 30.0%, P < 0.0001), and breech presentation (17.3% vs 3.2%, P < 0.0001) were significantly more common in craniosynostosis patients. Prenatally, mothers of craniosynostosis infants had higher incidence of gestational diabetes (13.5% vs 5.0%, P < 0.0001) and oligohydramnios (6.1% vs 1.3%, P < 0.0001) compared to regional controls. CONCLUSION: This study demonstrates that premature suture fusion is associated with prenatal risk factors such as gestational diabetes and oligohydramnios. Continued research into potentially modifiable prenatal risk factors and more refined prenatal diagnostic tools has the potential to reduce both the incidence of premature suture fusion and the sequelae of birth complications in this population.


Subject(s)
Craniosynostoses/etiology , Diabetes, Gestational , Oligohydramnios , Adult , Breech Presentation , Case-Control Studies , Cesarean Section , Female , Humans , Infant, Newborn , Male , North Carolina , Pregnancy , Retrospective Studies , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...