Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 146(10)2019 05 22.
Article in English | MEDLINE | ID: mdl-31036545

ABSTRACT

A hallmark of Wnt/ß-Catenin signaling is the extreme diversity of its transcriptional response, which varies depending on the cell and developmental context. What controls this diversity is poorly understood. In all cases, the switch from transcriptional repression to activation depends on a nuclear increase in ß-Catenin, which detaches the transcription factor T cell factor 7 like 1 (Tcf7l1) bound to Groucho (Gro) transcriptional co-repressors from its DNA-binding sites and transiently converts Tcf7/Lymphoid enhancer binding factor 1 (Lef1) into a transcriptional activator. One of the earliest and evolutionarily conserved functions of Wnt/ß-Catenin signaling is the induction of the blastopore lip organizer. Here, we demonstrate that the evolutionarily conserved BarH-like homeobox-2 (Barhl2) protein stabilizes the Tcf7l1-Gro complex and maintains the repressed expression of Tcf target genes by a mechanism that depends on histone deacetylase 1 (Hdac-1) activity. In this way, Barhl2 switches off the Wnt/ß-Catenin-dependent early transcriptional response, thereby limiting the formation of the organizer in time and/or space. This study reveals a novel nuclear inhibitory mechanism of Wnt/Tcf signaling that switches off organizer fate determination.


Subject(s)
Homeodomain Proteins/metabolism , Nerve Tissue Proteins/metabolism , Organizers, Embryonic/metabolism , TCF Transcription Factors/metabolism , beta Catenin/metabolism , Animals , Female , Homeodomain Proteins/genetics , Immunoprecipitation , In Situ Hybridization , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Male , Nerve Tissue Proteins/genetics , Plasmids/genetics , TCF Transcription Factors/genetics , Xenopus laevis , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...