Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 678
Filter
1.
Int J Biol Macromol ; : 133906, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019364

ABSTRACT

This novel research addresses the critical need for sustainable and efficient materials, aiming to enhance the optical and thermoelectric properties of Aluminum doped Zinc Oxide (Al doped ZnO) on cellulose fabric for diverse applications. At first stage, Cellulosic fabric of Al doped ZnO were experimentally studied in detail with respect to varying levels of annealing temperature. Structural analysis unveiled structural evolution in hexagonal crystal formations with a reduction in particle size up to 27.5 % on average, with increased temperature. Further, Raman spectroscopy revealed the doping effects on the vibrational modes of ZnO, potentially due to alterations in lattice structure. The ZnO optical modes are found as E2 (low) = 110 cm-1 with observed phonon frequency in the Raman spectra of ZnO at A1 (TO) = 364 cm-1. Fourier transform infrared spectroscopy (FTIR) revealed the presence of characteristic stretching of developed material. Furthermore, the optical characters revealed a decrement of 43.22 % in bandgap values with increasing annealing temperature. The analysis of thermoelectric attributes documented that the prominent sample annealed at 300°C exhibited the maximum Seebeck coefficient and power factor of 2.1 × 10-3 µV/oC and 5.8 × 10-21 Wm-1 K-2, respectively. At second stage the optical characteristics of experimentally optimized sample were rigorously studied through the application of soft of Material Studio while varying the doping ratio.

2.
Food Sci Anim Resour ; 44(4): 739-757, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38974725

ABSTRACT

Camel milk plays a critical role in the diet of peoples belongs to the semi-arid and arid regions. Since prehistoric times, camel milk marketing was limited due to lacking the processing facilities in the camel-rearing areas, nomads practiced the self-consumption of raw and fermented camel milk. A better understanding of the techno-functional properties of camel milk is required for product improvement to address market and customer needs. Despite the superior nutraceutical and health promoting potential, limited camel dairy products are available compared to other bovines. It is a challenging impetus for the dairy industry to provide diversified camel dairy products to consumers with superior nutritional and functional qualities. The physicochemical behavior and characteristics of camel milk is different than the bovine milk, which poses processing and technological challenges. Traditionally camel milk is only processed into various fermented and non-fermented products; however, the production of commercially important dairy products (cheese, butter, yogurt, and milk powder) from camel milk still needs to be processed successfully. Therefore, the industrial processing and transformation of camel milk into various products, including fermented dairy products, pasteurized milk, milk powder, cheese, and other products, require the development of new technologies based on applied research. This review highlights camel milk's processing constraints and techno-functional properties while presenting the challenges associated with processing the milk into various dairy products. Future research directions to improve product quality have also been discussed.

3.
Plants (Basel) ; 13(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38999593

ABSTRACT

Bassia indica (Wight) A.J. Scott is an Indian origin plant with documented medicinal and nutritional value, but has not been fully characterized yet. The present study was designed to establish pharmacognostic standards for the proper identification of the B. indica plant and its chemical characterization. The plant was standardized with World Health Organization (WHO) standardization tools and chemically characterized by Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectroscopy (GC-MS) analysis. Antibacterial potential was assessed by the zone of inhibition and minimum inhibitory concentration (MIC), and molecular docking studies were also performed. Pharmacognostic evaluation established the macroscopic and microscopic parameters for the identification of whole plant and its powder. Physicochemical parameters were also set forth while quantitative phytochemical analysis showed that the ethyl acetate fraction had the highest quantity of phenols, flavonoids, and tannins. FTIR analysis showed several functional groups such as phenols, alkanes, and alcohols while 55 phytochemicals were identified in the GC-MS analysis of the crude fraction. The crude extract and other fractions showed marked antibacterial activity, while the ethyl acetate fraction showed the least MIC (1.95-31.25 mg/mL). Phytochemicals identified in the GC-MS showed good molecular docking interactions against the DNA gyrase subunit B of bacteria with binding energies ranging from -4.2 to -9.4 kcal/mol. The current study describes the pharmacognostic characterization and phytochemical profiling of B. indica and provides scientific evidence to support its use in infections.

4.
Am J Transl Res ; 16(5): 1587-1601, 2024.
Article in English | MEDLINE | ID: mdl-38883366

ABSTRACT

OBJECTIVE: Formulate a gel and test its scientific efficacy for treating musculoskeletal ailments with or without phonophoresis. METHODS: Gel was made from Jasminum sambac leaf extract (30:70 aqueous-methanolic). A pragmatic, community-based, double-blinded randomized clinical study (IRCT20230202057310N1) was undertaken on 380 pre-diagnosed individuals with 1st and 2nd-grade musculoskeletal injuries, divided into four parallel groups (n = 95 per group): Group I got phonophoresis-applied J. sambac 10% gel. Group II got phonophoresis-applied diclofenac diethylammonium 2% gel. J. sambac 10% gel was superficially massaged onto Group III. Group IV received a superficial massage with diclofenac diethylammonium 2% gel. Color, stability, pH, spreadability, beginning of pain relief, discomfort, stiffness, and activities of daily living were recorded using the Numeric Pain Rating Scale (NPRS) and Western Ontario and McMaster Universities Arthritis Index (WOMAC) Scale. Methods included phytochemical analysis, molecular docking, and antioxidant quantification using 2,2-diphenylpicrylhydrazyl (DPPH), nitric oxide (NO), and superoxide dismutase (SOD) tests. RESULTS: J. sambac gel worked better than diclofenac gel in phonophoresis and massage, with regard to NPRS P<0.001, WOMAC pain P<0.001, WOMAC stiffness P<0.003, and WOMAC activities of daily living (ADLs) P<0.001. There were also significant differences in pain, stiffness, and ADLs. J. sambac showed significant (P<0.005-0.001) results. CONCLUSION: J. sambac gel relieved pain and inflammation in musculoskeletal injury patients. J. sambac gel is natural, cheap, and easy to make. Better drug absorption may explain the effectiveness of phonophoresis.

5.
Int J Infect Dis ; : 107141, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901728

ABSTRACT

OBJECTIVES: In Sindh Province, Pakistan, confirmed Crimean Congo hemorrhagic fever (CCHF) increased from zero in 2008 to 16 in 2015-2016. To counter this increase, in 2016, we initiated structured CCHF surveillance to improve estimates of risk factors for CCHF in Sindh and to identify potential interventions. METHODS: Beginning in 2016, all referral hospitals in Sindh reported all CCHF cases to surveillance agents. We used laboratory-confirmed cases from CCHF surveillance from 2016 to 2020 to compute incidence rates and in a case-control study to quantify risk factors for CCHF. RESULTS: For the 5 years, CCHF incidence was 4.2 per million for the Sindh capital, Karachi, (68 cases) and 0.4 per million elsewhere. Each year, the onset of new cases peaked during the 13 days during and after the 3-day Eid al Adha festival, when Muslims sacrificed livestock, accounting for 38% of cases. In Karachi, livestock for Eid were purchased at a seasonal livestock market that concentrated up to 700,000 livestock. CCHF cases were most common (44%) among the general population that had visited livestock markets (odds ratio = 102). CONCLUSIONS: Urban CCHF in Sindh province is associated with the general public's exposure to livestock markets in addition to high-risk occupations.

6.
PLoS One ; 19(6): e0304018, 2024.
Article in English | MEDLINE | ID: mdl-38905213

ABSTRACT

Fractional order algorithms demonstrate superior efficacy in signal processing while retaining the same level of implementation simplicity as traditional algorithms. The self-adjusting dual-stage fractional order least mean square algorithm, denoted as LFLMS, is developed to expedite convergence, improve precision, and incurring only a slight increase in computational complexity. The initial segment employs the least mean square (LMS), succeeded by the fractional LMS (FLMS) approach in the subsequent stage. The latter multiplies the LMS output, with a replica of the steering vector (R) of the intended signal. Mathematical convergence analysis and the mathematical derivation of the proposed approach are provided. Its weight adjustment integrates the conventional integer ordered gradient with a fractional-ordered. Its effectiveness is gauged through the minimization of mean square error (MSE), and thorough comparisons with alternative methods are conducted across various parameters in simulations. Simulation results underscore the superior performance of LFLMS. Notably, the convergence rate of LFLMS surpasses that of LMS by 59%, accompanied by a 49% improvement in MSE relative to LMS. So it is concluded that the LFLMS approach is a suitable choice for next generation wireless networks, including Internet of Things, 6G, radars and satellite communication.


Subject(s)
Algorithms , Signal Processing, Computer-Assisted , Least-Squares Analysis , Computer Simulation , Models, Theoretical
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124551, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38823246

ABSTRACT

Relationship between excited state dynamics and nonlinear optical (NLO) parameters is very unique. Herein, three different polyoxometalates (POMs) namely WD-POM (Wells-Dawson POM) based porphyrin hybrids WDPOM3PyP, Trans-2WDPOM2PyP, and 3WDPOMPyP (having one, two, and three WD-POM respectively), and their porphyrin precursors with (Trishydroxyl amino methane) namely Tris3PyP, Trans-2Tris2PyP, and 3TrisPyP respectively have been used for the study. Fluorescence decay and Z-scan studies by using nanosecond (ns) time span conveys the corresponding lifespan for each excited state, along with the NLO analysis respectively. The calculated lifetime data were found in the range of 3WDPOMPyP (τ1 = 5.65 ns), Trans-2WDPOM2PyP (τ1 = 2.21 ns), and WDPOM3PyP (τ1 = 1.96 ns). Third order NLO measurements represented that WDPOM3PyP showed better NLO response (χ3 = 2.26 × 10-10esu and ß = 1.54 × 10-5 esu) as compared to Trans-2WDPOM2PyP (χ3 = 1.73 × 10-10 esu and ß = 1.53 × 10-5 esu), and 3WDPOMPyP (χ3 = 1.55 × 10-10 esu and ß = 0.65 × 10-5 esu) obtained at wavelength of 532 nm. Electrochemical studies have shown that the minor energy differences between the singlet and triplet excited states are responsible for intercrossing system (ISC) that helps in the transfer of electrons from porphyrin moiety to WD-POM. By absorbing a photon, the excited species were produced causing an initial charge transfer. This charge transfer state undergoes an electron transfer decaying to the lowest triplet state, and singlet state causing an increase in NLO. The obtained results indicated potential uses in photonic and all-optical switching devices.

8.
Int J Biol Macromol ; 273(Pt 2): 133240, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38897521

ABSTRACT

Chemically cross-linked hydrogel nanoparticles (HGNPs) offer enhanced properties over their physical counterparts, particularly in drug delivery and cell encapsulation. This study applied pH-thermal dual responsive bio-adhesive HGNPs for dual complexation and enhanced the controlled release and bioavailability of cisplatin (CDDP) and Vitamin E (VE) drugs. The CDDP was loaded into the HGNPs via chemical conjugation with the carboxyl groups in the HGNPs surface by soy polysaccharides (SSPS). At the same time, the host-guest interaction complexed the VE through the ß-cyclodextrin (ß-CD). The HGNPs showed a uniform HGNPs size distribution of 90.77 ± 14.77 nm and 81.425 ± 13.21 nm before and after complexation, respectively. The FTIR, XRD, XPS, and zeta potential confirmed the conjugation. The cumulative release percent of CDDP reached 98 % at pH 1.2, while <45 % was released at pH 7.4. Our HGNPs enhance the incorporation of CDDP by substituting its chlorides with carboxyl groups of the SSPS; the loading of CDDP and VE was 15 ± 0.33 and 11.32 ± 0.25 wt%, respectively. Moreover, the CDDP and VE also released slower from the HGNPs at 25 °C than at 37 °C and 42 °C. The (VE/CDDP)-loaded HGNPs exhibited longer circulation time in vivo than free CDDP and free VE suspension.


Subject(s)
Cisplatin , Drug Liberation , Glycine max , Hydrogels , Nanoparticles , Polysaccharides , Vitamin E , beta-Cyclodextrins , Nanoparticles/chemistry , Cisplatin/chemistry , Cisplatin/pharmacokinetics , Cisplatin/administration & dosage , Glycine max/chemistry , Vitamin E/chemistry , beta-Cyclodextrins/chemistry , Polysaccharides/chemistry , Animals , Hydrogels/chemistry , Drug Carriers/chemistry , Hydrogen-Ion Concentration , Mice
9.
Opt Express ; 32(11): 19676-19683, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859097

ABSTRACT

The discovery of hybrid states in strong coupling interaction has gained growing attention in cavity-quantum electrodynamics research owing to its fundamental directives and potential in advanced optical applications. The ultra-confined mode volume of plasmonic cavity gold nanorods (AuNRs), particularly at the nanorod tip "hotspot" provides a large coupling strength, a prerequisite for a coherent energy exchange in the strong coupling regime. Here, we reported a remarkable Rabi splitting of ∼231 meV between gold nanorods longitudinal localized surface plasmon resonance (LLSPR) mode and quantum dots (QDs) at ambient conditions, monitored by dielectric medium tuning. Numerical simulations confirmed the result, displaying absorption spectral splitting.

10.
Disaster Med Public Health Prep ; 18: e89, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721660

ABSTRACT

OBJECTIVES: To quantify the burden of communicable diseases and characterize the most reported infections during public health emergency of floods in Pakistan. METHODS: The study's design is a descriptive trend analysis. The study utilized the disease data reported to District Health Information System (DHIS2) for the 12 most frequently reported priority diseases under the Integrated Disease Surveillance and Response (IDSR) system in Pakistan. RESULTS: In total, there were 1,532,963 suspected cases during August to December 2022 in flood-affected districts (n = 75) across Pakistan; Sindh Province reported the highest number of cases (n = 692,673) from 23 districts, followed by Khyber Pakhtunkhwa (KP) (n = 568,682) from 17 districts, Balochistan (n = 167,215) from 32 districts, and Punjab (n = 104,393) from 3 districts. High positivity was reported for malaria (79,622/201,901; 39.4%), followed by acute diarrhea (non-cholera) (23/62; 37.1%), hepatitis A and E (47/252; 18.7%), and dengue (603/3245; 18.6%). The crude mortality rate was 11.9 per 10 000 population (1824/1,532,963 [deaths/cases]). CONCLUSION: The study identified acute respiratory infection, acute diarrhea, malaria, and skin diseases as the most prevalent diseases. This suggests that preparedness efforts and interventions targeting these diseases should be prioritized in future flood response plans. The study highlights the importance of strengthening the IDSR as a Disease Early Warning System through the implementation of the DHIS2.


Subject(s)
Floods , Health Information Systems , Pakistan/epidemiology , Humans , Floods/statistics & numerical data , Health Information Systems/statistics & numerical data , Health Information Systems/trends , Mortality/trends , Communicable Diseases/mortality , Communicable Diseases/epidemiology
11.
Heliyon ; 10(10): e30886, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38784562

ABSTRACT

Human respiratory syncytial virus (RSV) is an underlying cause of lower respiratory illnesses in children, elderly and immunocompromised adults. RSV contains multiple structural and non-structural proteins with two major glycoproteins that control the initial phase of infection, fusion glycoprotein and the attachment (G) glycoprotein. G protein attaches to the ciliated cells of airways initiating the infection. The hypervariable G protein plays a vital role in evolution of RSV strains. We employed multiple bioinformatics tools on systematically accessed large-scale data to evaluate mutations, evolutionary history, and phylodynamics of RSV. Mutational analysis of central conserved region (CCR) on G protein-coding sequences between 163 and 189 positions revealed frequent mutations at site 178 in human RSV (hRSV) A while arginine to glutamine substitutions at site 180 positions in hRSV B, remained prevalent from 2009 to 2014. Phylogenetic analysis indicates multiple signature mutations within G protein responsible for diversification of clades. The USA and China have highest number of surveillance records, followed by Kenya. Markov Chain Monte Carlo Bayesian skyline plot revealed that RSV A evolved steadily from 1990 to 2000, and rapidly between 2003 and 2005. Evolution of RSV B continued from 2003 to 2022, with a high evolution stage from 2016 to 2020. Throughout evolution, cysteine residues maintained their strict conserved states while CCR has an entropy value of 0.0039(±0.0005). This study concludes the notion that RSV G glycoprotein is continuously evolving while the CCR region of G protein maintains its conserved state providing an opportunity for CCR-specific monoclonal antibodys (mAbs) and inhibitors as potential candidates for immunoprophylaxis.

12.
Int J Biol Macromol ; 272(Pt 1): 132532, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806082

ABSTRACT

The study involved preparing and applying edible nano-emulsion coatings containing hydroxypropyl methylcellulose (HPMC), beeswax (BW), and essential oils (thyme, cinnamon, clove, and peppermint) onto sweet cherries. The application was conducted at 4 °C, and the coated cherries were stored for 36 days. This research examines synthesized nano-emulsions physicochemical properties and antibacterial and antifungal activities (C1, C2, and C3). Additionally, it evaluates the quality parameters of control and coated sweet cherry samples. The features of the three edible coatings were assessed, and the findings from the zeta sizer, zeta potential, FTIR, and SEM analyses were deemed satisfactory. It was observed that the application of nano-emulsion coating C1 yielded positive results in maintaining quality attributes such as total suspended solids (TSS), total solids (TS), color, weight loss, respiration rate, firmness, total phenolic contents, and sensory evaluations. Nano-emulsion coating C1 demonstrated efficacy as an antibacterial and antifungal agent against foodborne pathogens E. coli and A. niger, respectively. The current research results are promising and applicable in food industries. The implications suggest that composite nano-emulsion, specifically nano-emulsion edible coatings, can be extensively and effectively used to preserve the quality and shelf life of fruits and vegetables. Furthermore, the environmental waste from conventional food packaging will be minimized using edible packaging applications.


Subject(s)
Hypromellose Derivatives , Oils, Volatile , Waxes , Waxes/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Hypromellose Derivatives/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Food Preservation/methods , Food Storage , Emulsions , Cymbopogon/chemistry , Edible Films , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Escherichia coli/drug effects , Fruit/chemistry
13.
Ultrasonics ; 141: 107343, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754149

ABSTRACT

Nomex honeycomb composite (NHC) has been increasingly used in the automotive, aerospace and defence applications due to its excellent thermal and mechanical properties. Its complex cellular hexagonal thin-walled configuration along with heterogeneous, soft and brittle nature pose substantial processing defects such as burr formation, tearing of walls, surface roughness, dimensional inaccuracy and low machining quality during conventional machining (CM). These surface defects have a substantial influence on the operating life and functional performance of its sandwiched structural members. Hybrid ultrasonic vibration assisted machining (HUSVAM) technology has been introduced to overcome such limitations. For an in depth research on HUSVAM of NHC using ultrasonic toothed disc cutter (UTDC), three dimensional finite element model was developed and experimental validation was carried out. The numerical simulation and experimental results were found to be in good agreement with one another. The influence of various machining parameters including the ultrasonic tool vibration amplitude (UTVA), feed rate (FR), depth of cut (DoC) and spindle angular speed (SAS) on NHC cutting forces, chip formation and surface quality was investigated using both HUSVAM and CM techniques. Furthermore, stresses, deformation and forces near tool-workpiece interaction along with the surface topography and morphologies were also analysed and compared for various operating conditions. A reduction in the cutting forces was found with the increase of SAS and UTVA (up to 65.47 % and 65.74 %, respectively). Although, the cutting forces were observed to increase by increasing the DoC and FR (up to 159.45 % and 126.33 %, respectively). DoC has a greater impact on the cutting forces among all machining parameters according to 4 levels, 4 factors (L16) orthogonal experiments based on Taguchi method. The results show that the chip formation and machining quality of NHC core can be improved with HUSVAM technique using UTDC. HUSVAM also reduced the cutting forces (up to 73 %) compared to CM. The ultrasonic toothed disc cutter generated large number of burr with very short length, no tearing defects and no uncut fibers as observed from scanning electron microscopy of NHC hexagonal cell structure, walls and triple points. A burr formation of less than 10 % was realized during HUSVAM of NHC cores for Fx≤3N, while it was found up to 20 % if Fx>3N, compared to at least 40 % during CM. The finite element model developed can be used to investigate the influence of HUSVAM on modern difficult to machine materials for enhanced surface quality.

14.
Food Sci Nutr ; 12(5): 3046-3067, 2024 May.
Article in English | MEDLINE | ID: mdl-38726411

ABSTRACT

Cancer incidences are rising each year. In 2020, approximately 20 million new cancer cases and 10 million cancer-related deaths were recorded. The World Health Organization (WHO) predicts that by 2024 the incidence of cancer will increase to 30.2 million individuals annually. Considering the invasive characteristics of its diagnostic procedures and therapeutic methods side effects, scientists are searching for different solutions, including using plant-derived bioactive compounds, that could reduce the probability of cancer occurrence and make its treatment more comfortable. In this regard, oridonin (ORI), an ent-kaurane diterpenoid, naturally found in the leaves of Rabdosia rubescens species, has been found to have antitumor, antiangiogenesis, antiasthmatic, antiinflammatory, and apoptosis induction properties. Extensive research has been performed on ORI to find various mechanisms involved in its anticancer activities. This review article provides an overview of ORI's effectiveness on murine and human cancer populations from 1976 to 2022 and provides insight into the future application of ORI in different cancer therapies.

15.
Cureus ; 16(4): e58303, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38752047

ABSTRACT

INTRODUCTION: Reduction quality is of paramount importance for an optimal outcome in unstable pertrochanteric fractures. The non-anatomical functional anteromedial buttress is proposed to prevent impending mechanical complications. We aimed to evaluate the role of anteromedial cortical support in preventing mechanical complications following fixation with the cephalomedullary nail. MATERIALS AND METHODS: A prospective, single-arm interventional study was conducted in the Orthopaedics Department of a Combined Military Hospital (CMH) in Rawalpindi. The duration of the study was 24 months. Patients were recruited by the purposive sampling technique as per inclusion/exclusion criteria. Preoperatively, the reduction was categorized as per Baumgartner's and Chang's criteria. Post-operatively, weight bearing as tolerated was advised. Radiographs prior to discharge for loss of reduction were evaluated. Follow-up radiographic measurements of neck length, neck shaft angle, and their loss as per protocol were done at three and six months. RESULTS: A total of 202 patients were operated on from October 21 until August 23. Mortality at six months in 39 patients (19.3%) and loss to follow-up in 31 patients (15.3%) resulted in 132 patients with complete follow-up and having developed complications in 12 patients (9.09%). The mean age was 76.3 ± 7.98 years; males were 105 (79.5%), and females were 27 (20.5%). Closed reduction was 58 (43.9%), and additional manoeuvres were required in 74 (56.1%). The mean tip apex distance (TAD) was 24.56 ± 2.76, and the Calcar gap was 5.16 ± 1.27. Cleveland zone centre-centre in 54 (40.9%), inferior-centre in 65 (49.2%), and inferior-posterior (9.9%) were statistically significant for mechanical complications (p≤0.001). There was a significant association between the grading of Chang's and Baumgartner's poor groups for the development of mechanical complications (p≤0.001). The mean time to full weight bearing without support was 21 ± 1.22 weeks. The mean Hip Harris score at six months was 69.27 ± 7.68. CONCLUSION: Results suggest that anteromedial cortical support can lead to fewer potential mechanical complications at six months. A higher Chang's grade drives surgeons to engage in additional manoeuvres. Anteromedial cortical support is worth consideration for unstable pertrochanteric fractures.

16.
BMC Health Serv Res ; 24(1): 588, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711060

ABSTRACT

BACKGROUND: Effective skills and training for physicians are essential for communicating difficult or distressing information, also known as breaking bad news (BBN). This study aimed to assess both the capacity and the practices of clinicians in Pakistan regarding BBN. METHODS: A cross-sectional study was conducted involving 151 clinicians. Quantitative component used a structured questionnaire, while qualitative data were obtained through in-depth interviews with 13 medical educationists. The responses were analyzed using descriptive statistics and thematic analysis. RESULTS: While most clinicians acknowledged their responsibility of delivering difficult news, only a small percentage had received formal training in BBN. Areas for improvement include time and interruption management, rapport building, and understanding the patients' point of view. Prognosis and treatment options were not consistently discussed. Limited importance is given to BBN in medical education. DISCUSSION: Training in BBN will lead to improved patient and attendants' satisfaction, and empathetic support during difficult times.


Subject(s)
Communication , Physician-Patient Relations , Truth Disclosure , Humans , Pakistan , Cross-Sectional Studies , Male , Female , Surveys and Questionnaires , Adult , Physicians/psychology , Qualitative Research , Clinical Competence , Interviews as Topic , Middle Aged , Attitude of Health Personnel
17.
ACS Omega ; 9(18): 20042-20055, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38737051

ABSTRACT

Drought is the worst environmental stress constraint that inflicts heavy losses to global food production, such as wheat. The metabolic responses of seeds produced overtransgenerational exposure to e[CO2] to recover drought's effects on wheat are still unexplored. Seeds were produced constantly for four generations (F1 to F4) under ambient CO2 (a[CO2], 400 µmol L-1) and elevated CO2 (e[CO2], 800 µmol L-1) concentrations, and then further regrown under natural CO2 conditions to investigate their effects on the stress memory metabolic processes liable for increasing drought resistance in the next generation (F5). At the anthesis stage, plants were subjected to normal (100% FC, field capacity) and drought stress (60% FC) conditions. Under drought stress, plants of transgenerational e[CO2] exposed seeds showed markedly increased superoxide dismutase (16%), catalase (24%), peroxidase (9%), total antioxidants (14%), and proline (35%) levels that helped the plants to sustain normal growth through scavenging of hydrogen peroxide (11%) and malondialdehyde (26%). The carbohydrate metabolic enzymes such as aldolase (36%), phosphoglucomutase (12%), UDP-glucose pyrophosphorylase (25%), vacuolar invertase (33%), glucose-6-phosphate-dehydrogenase (68%), and cell wall invertase (17%) were decreased significantly; however, transgenerational seeds produced under e[CO2] showed a considerable increase in their activities in drought-stressed wheat plants. Moreover, transgenerational e[CO2] exposed seeds under drought stress caused a marked increase in leaf Ψw (15%), chlorophyll a (19%), chlorophyll b (8%), carotenoids (12%), grain spike (16%), hundred grain weight (19%), and grain yield (10%). Hence, transgenerational seeds exposed to e[CO2] upregulate the drought recovery metabolic processes to improve the grain yield of wheat under drought stress conditions.

18.
Int J Biol Macromol ; 267(Pt 2): 131441, 2024 May.
Article in English | MEDLINE | ID: mdl-38583848

ABSTRACT

The thermal stability of polyurethanes, known for its limitations, was addressed in this research by seeking improvement through the introduction of carbohydrate-based chain extenders. In this research paper, we systematically sought to improve the thermal resistance of polyurethanes by incorporating carboxymethyl cellulose and chitosan, representing a pioneering application of the mixture design approach in their preparation. In this synthesis, hydroxyl-terminated polybutadiene and isophorone diisocyanate (IPDI) were reacted to prepare -NCO terminated prepolymer, which was subsequently reacted with varying mole ratios of CMC and CSN to develop a series of five PU samples. The prepared PU samples were characterized using the Fourier-transformed infrared spectroscopic technique. Thermal pyrolysis of PU samples was examined using thermal gravimetric analysis (TGA). It was observed that, among all the samples, PUS-3 showed remarkable thermal stability over a wide temperature range. A comprehensive statistical analysis was conducted to substantiate the experimental findings. It was estimated that CMC and CSN significantly enhance the thermal stability of the samples when involved in an interaction fashion. The ANOVA Table for the mixture design demonstrates that over 90 % of the total variation in thermal stability is explained by the mixture model across a wide temperature range. Moreover, PSU-3 exhibited 4 % more thermal stability over a wide range of temperatures on average, as compared to contemporary samples.


Subject(s)
Carboxymethylcellulose Sodium , Chitosan , Polyurethanes , Chitosan/chemistry , Carboxymethylcellulose Sodium/chemistry , Polyurethanes/chemistry , Temperature , Spectroscopy, Fourier Transform Infrared , Thermogravimetry
19.
PLoS One ; 19(4): e0298451, 2024.
Article in English | MEDLINE | ID: mdl-38635576

ABSTRACT

The paper presents an innovative computational framework for predictive solutions for simulating the spread of malaria. The structure incorporates sophisticated computing methods to improve the reliability of predicting malaria outbreaks. The study strives to provide a strong and effective tool for forecasting the propagation of malaria via the use of an AI-based recurrent neural network (RNN). The model is classified into two groups, consisting of humans and mosquitoes. To develop the model, the traditional Ross-Macdonald model is expanded upon, allowing for a more comprehensive analysis of the intricate dynamics at play. To gain a deeper understanding of the extended Ross model, we employ RNN, treating it as an initial value problem involving a system of first-order ordinary differential equations, each representing one of the seven profiles. This method enables us to obtain valuable insights and elucidate the complexities inherent in the propagation of malaria. Mosquitoes and humans constitute the two cohorts encompassed within the exposition of the mathematical dynamical model. Human dynamics are comprised of individuals who are susceptible, exposed, infectious, and in recovery. The mosquito population, on the other hand, is divided into three categories: susceptible, exposed, and infected. For RNN, we used the input of 0 to 300 days with an interval length of 3 days. The evaluation of the precision and accuracy of the methodology is conducted by superimposing the estimated solution onto the numerical solution. In addition, the outcomes obtained from the RNN are examined, including regression analysis, assessment of error autocorrelation, examination of time series response plots, mean square error, error histogram, and absolute error. A reduced mean square error signifies that the model's estimates are more accurate. The result is consistent with acquiring an approximate absolute error close to zero, revealing the efficacy of the suggested strategy. This research presents a novel approach to solving the malaria propagation model using recurrent neural networks. Additionally, it examines the behavior of various profiles under varying initial conditions of the malaria propagation model, which consists of a system of ordinary differential equations.


Subject(s)
Culicidae , Malaria , Animals , Humans , Reproducibility of Results , Neural Networks, Computer , Malaria/epidemiology , Models, Theoretical
20.
PLoS One ; 19(4): e0299831, 2024.
Article in English | MEDLINE | ID: mdl-38635503

ABSTRACT

This article examines the role of legal structure in explaining financial development in twenty-three emerging markets, which has not been explored in institutional economics literature before. This study relied on Pedroni, and Kao cointegration tests, which is followed by the renowned panel cointegration technique. The results of the Pedroni and Kao cointegration tests show that the variables understudy is cointegrated in the long-run. These findings are confirmed by the panel cointegration showing that legal structure (LS) has positive impact on financial development (FIND) in long-run that support Law and Finance, and New Institutional Economics theories in emerging markets. This study is the first to directly examine the long-run impact of LS on FIND in emerging markets, and the result remains consistent across alternative measure of FIND. The findings of this study have important policy implications for emerging markets. Policymakers should focus on creating a legal environment that is conducive to financial development. This includes strengthening the legal framework, improving regulatory regimes, and promoting market autonomy. Additionally, policymakers should work to attract foreign investment, which can help spur economic growth and development in emerging markets. The findings of the study are consistent across battery of robustness testing.


Subject(s)
Carbon Dioxide , Economic Development , Carbon Dioxide/chemistry , Investments , Internationality , Policy
SELECTION OF CITATIONS
SEARCH DETAIL
...