Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Dig Dis ; 21(8): 430-436, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32585073

ABSTRACT

Inflammasomes have become an important natural sensor of host immunity, and can protect various organs against pathogenic infections, metabolic syndromes, cellular stress and cancer metastasis. Inflammasomes are intracellular multi-protein complexes found in both parenchymal and non-parenchymal cells, stimulating the initiation of caspase-1 and interleukin (IL)-1ß and IL-18 in response to cell danger signals. Inflammasomes induce cell death mechanisms. The potential role of NOD-like receptor protein 3 (NLRP3) inflammasome in alcoholic and non-alcoholic steatohepatitis, hepatitis, nanoparticle-induced liver injury and other liver diseases has recently attracted widespread attention from clinicians and researchers. In this review we summarize the role played by the NLRP3 inflammasome in molecular and pathophysiological mechanisms in the pathogenesis and progression of liver disease. This article aims to establish that targeting the NLRP3 inflammasome and other inflammasome components may make a significant therapeutic approach to the treatment of liver disease.


Subject(s)
Inflammasomes/genetics , Liver Diseases/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Adaptive Immunity/genetics , Animals , Caspase 1/metabolism , Cell Death/genetics , Disease Progression , Humans , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Liver/metabolism , Signal Transduction/genetics
2.
Physiol Rep ; 7(21): e14170, 2019 11.
Article in English | MEDLINE | ID: mdl-31691545

ABSTRACT

Acute pancreatitis (AP) is an acute gastrointestinal disorder that is the most common and requiring emergency hospitalization. Its incidence is increasing worldwide, thus increasing the burden of medical services. Approximately 20% of the patients develop moderate to severe necrotizing pancreatitis associated with pancreatic or peri-pancreatic tissue necrosis and multiple organ failure. There are many reports about the anti-inflammatory effect of mesenchymal stem cells (MSCs) on pancreatitis and the repair of tissue damage. MSCs cells come from a wide range of sources, autologous MSCs come from bone marrow and allogeneic MSCs such as umbilical cord blood MSCs, placenta-derived MSCs, etc. The wide source is not only an advantage of MSCs but also a disadvantage of MSCs. Because of different cell sources and different methods of collection and preparation, it is impossible to establish a unified standard method for evaluation of efficacy. The biggest advantage of iMSCs is that it can be prepared by a standardized process, and can be prepared on a large scale, which makes it easier to commercialize. This paper reviews the present status of diagnosis and progress of MSCs therapy for AP.


Subject(s)
Mesenchymal Stem Cell Transplantation , Pancreatitis/diagnosis , Pancreatitis/therapy , Animals , Humans , Inflammation Mediators , Pancreatitis/physiopathology , Treatment Outcome
3.
Front Pharmacol ; 9: 583, 2018.
Article in English | MEDLINE | ID: mdl-29922160

ABSTRACT

In this paper, we propose DeCoST (Drug Repurposing from Control System Theory) framework to apply control system paradigm for drug repurposing purpose. Drug repurposing has become one of the most active areas in pharmacology since the last decade. Compared to traditional drug development, drug repurposing may provide more systematic and significantly less expensive approaches in discovering new treatments for complex diseases. Although drug repurposing techniques rapidly evolve from "one: disease-gene-drug" to "multi: gene, dru" and from "lazy guilt-by-association" to "systematic model-based pattern matching," mathematical system and control paradigm has not been widely applied to model the system biology connectivity among drugs, genes, and diseases. In this paradigm, our DeCoST framework, which is among the earliest approaches in drug repurposing with control theory paradigm, applies biological and pharmaceutical knowledge to quantify rich connective data sources among drugs, genes, and diseases to construct disease-specific mathematical model. We use linear-quadratic regulator control technique to assess the therapeutic effect of a drug in disease-specific treatment. DeCoST framework could classify between FDA-approved drugs and rejected/withdrawn drug, which is the foundation to apply DeCoST in recommending potentially new treatment. Applying DeCoST in Breast Cancer and Bladder Cancer, we reprofiled 8 promising candidate drugs for Breast Cancer ER+ (Erbitux, Flutamide, etc.), 2 drugs for Breast Cancer ER- (Daunorubicin and Donepezil) and 10 drugs for Bladder Cancer repurposing (Zafirlukast, Tenofovir, etc.).

4.
Front Microbiol ; 9: 380, 2018.
Article in English | MEDLINE | ID: mdl-29593668

ABSTRACT

Shiga toxin (Stxs) is a family of structurally and functionally related bacterial cytotoxins produced by Shigella dysenteriae serotype 1 and shigatoxigenic group of Escherichia coli that cause shigellosis and hemorrhagic colitis, respectively. Until recently, it has been thought that Stxs only inhibits the protein synthesis and induces expression to a limited number of genes in host cells, but recent data showed that Stxs can trigger several signaling pathways in mammalian cells and activate cell cycle and apoptosis. To explore the changes in gene expression induced by Stxs that have been shown in other systems to correlate with cancer progression, we performed the simulated analysis of cDNA dataset and found differentially expressed genes (DEGs) of human THP1-monocytic cells treated with Stxs. In this study, the entire data (treated and untreated replicates) was analyzed by statistical algorithms implemented in Bioconductor packages. The output data was validated by the k-fold cross technique using generalized linear Gaussian models. A total of 50 DEGs were identified. 7 genes including TSLP, IL6, GBP1, CD274, TNFSF13B, OASL, and PNPLA3 were considerably (<0.00005) related to cancer proliferation. The functional enrichment analysis showed 6 down-regulated and 1 up-regulated genes. Among these DEGs, IL6 was associated with several cancers, especially with leukemia, lymphoma, lungs, liver and breast cancers. The predicted regulatory motifs of these genes include conserved RELA, STATI, IRFI, NF-kappaB, PEND, HLF, REL, CEBPA, DI_2, and NFKB1 transcription factor binding sites (TFBS) involved in the complex biological functions. Thus, our findings suggest that Stxs has the potential as a valuable tool for better understanding of treatment strategies for several cancers.

SELECTION OF CITATIONS
SEARCH DETAIL
...