Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20020, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37973894

ABSTRACT

The article introduces a novel Bayesian AEWMA Control Chart that integrates different loss functions (LFs) like the square error loss function and Linex loss function under an informative prior for posterior and posterior predictive distributions, implemented across diverse ranked set sampling (RSS) designs. The main objective is to detect small to moderate shifts in the process mean, with the average run length and standard deviation of run length serving as performance measures. The study employs a hard bake process in semiconductor production to demonstrate the effectiveness of the proposed chart, comparing it with existing control charts through Monte Carlo simulations. The results underscore the superiority of the proposed approach, particularly under RSS designs compared to simple random sampling (SRS), in identifying out-of-control signals. Overall, this study contributes a comprehensive method integrating various LFs and RSS schemes, offering a more precise and efficient approach for detecting shifts in the process mean. Real-world applications highlight the heightened sensitivity of the suggested chart in identifying out-of-control signals compared to existing Bayesian charts using SRS.

2.
Front Genet ; 11: 539227, 2020.
Article in English | MEDLINE | ID: mdl-33093842

ABSTRACT

Meiotic recombination is the driving force of evolutionary development and an important source of genetic variation. The meiotic recombination does not take place randomly in a chromosome but occurs in some regions of the chromosome. A region in chromosomes with higher rate of meiotic recombination events are considered as hotspots and a region where frequencies of the recombination events are lower are called coldspots. Prediction of meiotic recombination spots provides useful information about the basic functionality of inheritance and genome diversity. This study proposes an intelligent computational predictor called iRSpots-DNN for the identification of recombination spots. The proposed predictor is based on a novel feature extraction method and an optimized deep neural network (DNN). The DNN was employed as a classification engine whereas, the novel features extraction method was developed to extract meaningful features for the identification of hotspots and coldspots across the yeast genome. Unlike previous algorithms, the proposed feature extraction avoids bias among different selected features and preserved the sequence discriminant properties along with the sequence-structure information simultaneously. This study also considered other effective classifiers named support vector machine (SVM), K-nearest neighbor (KNN), and random forest (RF) to predict recombination spots. Experimental results on a benchmark dataset with 10-fold cross-validation showed that iRSpots-DNN achieved the highest accuracy, i.e., 95.81%. Additionally, the performance of the proposed iRSpots-DNN is significantly better than the existing predictors on a benchmark dataset. The relevant benchmark dataset and source code are freely available at: https://github.com/Fatima-Khan12/iRspot_DNN/tree/master/iRspot_DNN.

SELECTION OF CITATIONS
SEARCH DETAIL
...