Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Equine Vet Sci ; 119: 104137, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36223818

ABSTRACT

African horse sickness (AHS) is a viral disease of equids, caused by a virus of the genus Orbivirus, family Reoviridae. The African horse sickness virus (AHSV) genome is made up of ten double-stranded RNA (dsRNA) segments that together code for seven structural and four nonstructural proteins. AHS is endemic in sub-Saharan countries. The efficacy and safety of inactivated AHS vaccines containing all nine serotypes, produced at the Central Veterinary Research Laboratory (CVRL) in Dubai, United Arab Emirates have been proven in the past. All nine AHSV serotypes were isolated from 102 samples collected in the last 20 years from horse fatalities in seven different area of Kenya, Africa. CVRL inactivated AHS vaccines are used in a few African countries defining the importance of this present study to compare the genome sequences of the nine AHSV serotypes isolated from horse fatalities in Kenya and nine AHSV serotypes isolated in South Africa. The hypothesized serotypes of the newly sequenced AHSV field strains from Kenya were likewise confirmed in this investigation, and they show substantial sequence homologies with recently isolated AHSV field strains.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Horse Diseases , Orbivirus , Animals , Horses , African Horse Sickness/epidemiology , African Horse Sickness Virus/genetics , Orbivirus/genetics , Serogroup , South Africa/epidemiology , Horse Diseases/epidemiology
2.
Equine Vet J ; 53(4): 826-833, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33011979

ABSTRACT

BACKGROUND: African horse sickness (AHS) is a devastating viral disease of equids that was first recorded in 1327. Currently, prevention and control of the disease are based on attenuated vaccines and midge control. It has been shown that attenuated Orbivirus vaccines are not always safe as they may reverse to virulence. OBJECTIVES: In the Emirate of Dubai, a vaccination experiment was carried out with an inactivated AHS vaccine produced at the Central Veterinary Research Laboratory (CVRL), Dubai, UAE to investigate the humoral antibody response of AHS-naïve horses to this vaccine. Our vaccination experiment was performed to establish an AHS vaccine bank in the UAE to protect horses from the disease in case of an outbreak. Therefore, CVRL established an inactivated AHS vaccine containing all nine serotypes which induce high neutralising antibodies. STUDY DESIGN: A total of 10 horses kept in a desert isolation area were subcutaneously and intramuscularly vaccinated with an inactivated vaccine containing all nine AHS serotypes previously isolated from Kenyan horse fatalities. Primary immunisation was followed by two booster immunisations 4 weeks and 6 months apart. After 13 months, an annual booster was administered. METHODS: Blood samples were regularly withdrawn for ELISA and virus neutralisation testing. Additionally, EDTA blood was tested every second day for 14 days post each vaccination for the presence of AHS virus or its RNA. RESULTS: Results show that ELISA and virus neutralising antibodies appeared after the first booster, declined after 4-6 months and therefore three vaccinations and an annual vaccination are necessary to achieve high protective virus neutralising antibodies. MAIN LIMITATIONS: No challenge infection was carried out due to the lack of a safe facility in the UAE. CONCLUSION: Before more advanced AHS vaccines become a reality, inactivated vaccines containing all nine serotypes should be used as they produce high ELISA and neutralising antibodies.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Horse Diseases , Viral Vaccines , African Horse Sickness/prevention & control , Animals , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , Horse Diseases/prevention & control , Horses , Kenya , Serogroup , Vaccination/veterinary , Vaccines, Inactivated
3.
J Gen Virol ; 98(6): 1349-1359, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28613145

ABSTRACT

The recent emergence of Middle East respiratory syndrome (MERS) coronavirus and its discovery from dromedary camels has boosted interest in the search for novel viruses in dromedaries. While bocaparvoviruses are known to infect various animals, it was not known that they exist in dromedaries. In this study, we describe the discovery of two novel dromedary camel bocaparvoviruses (DBoVs), DBoV1 and DBoV2, from dromedary faecal samples in Dubai. Among 667 adult dromedaries and 72 dromedary calves, 13.9 % of adult dromedaries and 33.3 % of dromedary calves were positive for DBoV1, while 7.0 % of adult dromedaries and 25.0 % of dromedary calves were positive for DBoV2, as determined by PCR. Sequencing of 21 DBoV1 and 18 DBoV2 genomes and phylogenetic analysis showed that DBoV1 and DBoV2 formed two distinct clusters, with only 32.6-36.3 % amino acid identities between the DBoV1 and DBoV2 strains. Quasispecies were detected in both DBoVs. The amino acid sequences of the NS1 proteins of all the DBoV1 and DBoV2 strains showed <85 % identity to those of all the other bocaparvoviruses, indicating that DBoV1 and DBoV2 are two bocaparvovirus species according to the ICTV criteria. Although the typical genome structure of NS1-NP1-VP1/VP2 was observed in DBoV1 and DBoV2, no phospholipase A2 motif and associated calcium binding site were observed in the predicted VP1 sequences for any of the 18 sequenced DBoV2, and no start codons were found for their VP1. For all 18 DBoV2 genomes, an AT-rich region of variable length and composition was present downstream to NP1. Further studies will be crucial to understand the pathogenic potential of DBoVs in this unique group of animals.


Subject(s)
Bocavirus/classification , Bocavirus/isolation & purification , Camelus/virology , Feces/virology , Parvoviridae Infections/veterinary , Animals , Bocavirus/genetics , Cluster Analysis , Gene Order , Genome, Viral , Parvoviridae Infections/virology , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology, Amino Acid , United Arab Emirates
4.
Emerg Microbes Infect ; 5(12): e128, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-27999424

ABSTRACT

Little is known regarding the molecular epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV) circulating in dromedaries outside Saudi Arabia. To address this knowledge gap, we sequenced 10 complete genomes of MERS-CoVs isolated from 2 live and 8 dead dromedaries from different regions in the United Arab Emirates (UAE). Phylogenetic analysis revealed one novel clade A strain, the first detected in the UAE, and nine clade B strains. Strain D998/15 had a distinct phylogenetic position within clade A, being more closely related to the dromedary isolate NRCE-HKU205 from Egypt than to the human isolates EMC/2012 and Jordan-N3/2012. A comparison of predicted protein sequences also demonstrated the existence of two clade A lineages with unique amino acid substitutions, A1 (EMC/2012 and Jordan-N3/2012) and A2 (D998/15 and NRCE-HKU205), circulating in humans and camels, respectively. The nine clade B isolates belong to three distinct lineages: B1, B3 and B5. Two B3 strains, D1271/15 and D1189.1/15, showed evidence of recombination between lineages B4 and B5 in ORF1ab. Molecular clock analysis dated the time of the most recent common ancestor (tMRCA) of clade A to March 2011 and that of clade B to November 2011. Our data support a polyphyletic origin of MERS-CoV in dromedaries and the co-circulation of diverse MERS-CoVs including recombinant strains in the UAE.


Subject(s)
Camelus/virology , Coronavirus Infections/veterinary , Genetic Variation , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Phylogeny , Animals , Cluster Analysis , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Evolution, Molecular , Genome, Viral , Middle East Respiratory Syndrome Coronavirus/genetics , Molecular Epidemiology , Recombination, Genetic , Sequence Analysis, DNA , Sequence Homology , United Arab Emirates/epidemiology
5.
Genome Announc ; 4(4)2016 Aug 18.
Article in English | MEDLINE | ID: mdl-27540055

ABSTRACT

We report the complete genome sequence of influenza virus H9N2 associated with a fatal outbreak among chickens in Dubai. All segments are clustered with avian H9N2 viruses circulating in the Middle East but distinct from those in southeast Asia. It is not a reassortant virus or transmitted from other regions.

SELECTION OF CITATIONS
SEARCH DETAIL
...