Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heredity (Edinb) ; 130(5): 335-345, 2023 05.
Article in English | MEDLINE | ID: mdl-36792661

ABSTRACT

It is hypothesized that the genome-wide genic markers may increase the prediction accuracy of genomic selection for quantitative traits. To test this hypothesis, a set of candidate gene-based markers for yield and grain traits-related genes cloned across the rice genome were custom-designed. A multi-model, multi-locus genome-wide association study (GWAS) was performed using new genic markers developed to test their effectiveness for gene discovery. Two multi-locus models, FarmCPU and mrMLM, along with a single-locus mixed linear model (MLM), identified 28 significant marker-trait associations. These associations revealed novel causative alleles for grain weight and pleiotropic associations with other traits. For instance, the marker YD91 derived from the gene OsAAP3 on chromosome 1 was consistently associated with grain weight, while the gene has a significant effect on grain yield. Furthermore, nine genomic selection methods, including regression-based and machine learning-based models, were used to predict grain weight using a leave-one-out five-fold cross-validation approach to optimize the genomic selection model with genic markers. Among nine prediction models, Kernel Hilbert Space Regression (RKHS) is the best among regression-based models, and Random Forest Regression (RFR) is the best among machine learning-based models. Genomic prediction accuracies with and without GWAS significant markers were compared to assess the effectiveness of markers. The rapid decreases in prediction accuracy upon dropping GWAS significant markers indicate the effectiveness of new genic markers in genomic selection. Apart from that, the candidate gene-based markers were found to be more effective in genomic selection programs for better accuracy.


Subject(s)
Genome-Wide Association Study , Oryza , Oryza/genetics , Plant Breeding , Genetic Markers , Phenotype , Genomics/methods , Edible Grain/genetics , Polymorphism, Single Nucleotide
2.
Sci Rep ; 12(1): 13832, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35974066

ABSTRACT

Quantitative trait loci (QTL) for rice grain weight identified using bi-parental populations in various environments were found inconsistent and have a modest role in marker assisted breeding and map-based cloning programs. Thus, the identification of a consistent consensus QTL region across populations is critical to deploy in marker aided breeding programs. Using the QTL meta-analysis technique, we collated rice grain weight QTL information from numerous studies done across populations and in diverse environments to find constitutive QTL for grain weight. Using information from 114 original QTL in meta-analysis, we discovered three significant Meta-QTL (MQTL) for grain weight on chromosome 3. According to gene ontology, these three MQTL have 179 genes, 25 of which have roles in developmental functions. Amino acid sequence BLAST of these genes indicated their orthologue conservation among core cereals with similar functions. MQTL3.1 includes the OsAPX1, PDIL, SAUR, and OsASN1 genes, which are involved in grain development and have been discovered to play a key role in asparagine biosynthesis and metabolism, which is crucial for source-sink regulation. Five potential candidate genes were identified and their expression analysis indicated a significant role in early grain development. The gene sequence information retrieved from the 3 K rice genome project revealed the deletion of six bases coding for serine and alanine in the last exon of OsASN1 led to an interruption in the synthesis of α-helix of the protein, which negatively affected the asparagine biosynthesis pathway in the low grain weight genotypes. Further, the MQTL3.1 was validated using linked marker RM7197 on a set of genotypes with extreme phenotypes. MQTL that have been identified and validated in our study have significant scope in MAS breeding and map-based cloning programs for improving rice grain weight.


Subject(s)
Oryza , Quantitative Trait Loci , Asparagine/genetics , Edible Grain/genetics , Genetic Association Studies , Oryza/genetics , Phenotype , Plant Breeding
SELECTION OF CITATIONS
SEARCH DETAIL
...