Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biomolecules ; 12(10)2022 09 24.
Article in English | MEDLINE | ID: mdl-36291574

ABSTRACT

Glutathione transferases (GSTs) are a family of Phase II detoxification enzymes that are involved in the development of multi-drug resistance (MDR) phenomena toward chemotherapeutic agents. GST inhibitors are considered candidate compounds able to chemomodulate and reverse MDR. The natural flavonoid myricetin (MYR) has been shown to exhibit a wide range of pharmacological functions, including antitumor activity. In the present work, the interaction of MYR with human glutathione transferase A1-1 (hGSTA1-1) was investigated by kinetics inhibition analysis and molecular modeling studies. The results showed that MYR binds with high affinity to hGSTA1-1 (IC50 2.1 ± 0.2 µΜ). It functions as a non-competitive inhibitor towards the electrophile substrate 1-chloro-2,4-dinitrobenzene (CDNB) and as a competitive inhibitor towards glutathione (GSH). Chemical modification studies with the irreversible inhibitor phenethyl isothiocyanate (PEITC), in combination with in silico molecular docking studies allowed the prediction of the MYR binding site. MYR appears to bind at a distinct location, partially overlapping the GSH binding site (G-site). The results of the present study show that MYR is a potent inhibitor of hGSTA1-1 that can be further exploited towards the development of natural, safe, and effective GST-targeted cancer chemosensitizers.


Subject(s)
Flavonoids , Glutathione Transferase , Humans , Dinitrochlorobenzene , Flavonoids/pharmacology , Glutathione/metabolism , Glutathione Transferase/antagonists & inhibitors , Glutathione Transferase/metabolism , Kinetics , Molecular Docking Simulation
2.
Metabolites ; 11(3)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33806779

ABSTRACT

Glutathione transferases (GSTs) are a family of Phase II detoxification enzymes that are involved in the development of the multidrug resistance (MDR) mechanism in cancer cells and therefore affect the clinical outcome of cancer chemotherapy. The discovery of nontoxic natural compounds as inhibitors for GSTs is a promising approach for chemosensitizing and reversing MDR. Fisetin (7,3',4'-flavon-3-ol) is a plant flavonol present in many plants and fruits. In the present work, the interaction of fisetin with human glutathione transferase A1-1 (hGSTA1-1) was investigated. Kinetic analysis revealed that fisetin is a reversible inhibitor for hGSTA1-1 with IC50 1.2 ± 0.1 µΜ. It functions as a mixed-type inhibitor toward glutathione (GSH) and as a noncompetitive inhibitor toward the electrophile substrate 1-chloro-2,4-dinitrobenzene (CDNB). In silico molecular modeling and docking predicted that fisetin binds at a distinct location, in the solvent channel of the enzyme, and occupies the entrance of the substrate-binding sites. Treatment of proliferating human epithelial colorectal adenocarcinoma cells (CaCo-2) with fisetin causes a reduction in the expression of hGSTA1-1 at the mRNA and protein levels. In addition, fisetin inhibits GST activity in CaCo-2 cell crude extract with an IC50 (2.5 ± 0.1 µΜ), comparable to that measured using purified recombinant hGSTA1-1. These actions of fisetin can provide a synergistic role toward the suppression and chemosensitization of cancer cells. The results of the present study provide insights into the development of safe and effective GST-targeted cancer chemosensitizers.

3.
Molecules ; 26(8)2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33924269

ABSTRACT

Human glutathione transferase A1-1 (hGSTA1-1) contributes to developing resistance to anticancer drugs and, therefore, is promising in terms of drug-design targets for coping with this phenomenon. In the present study, the interaction of anthraquinone and diazo dichlorotriazine dyes (DCTD) with hGSTA1-1 was investigated. The anthraquinone dye Procion blue MX-R (PBMX-R) appeared to interact with higher affinity and was selected for further study. The enzyme was specifically and irreversibly inactivated by PBMX-R, following a biphasic pseudo-first-order saturation kinetics, with approximately 1 mol of inhibitor per mol of the dimeric enzyme being incorporated. Molecular modeling and protein chemistry data suggested that the modified residue is the Cys112, which is located at the entrance of the solvent channel at the subunits interface. The results suggest that negative cooperativity exists upon PBMX-R binding, indicating a structural communication between the two subunits. Kinetic inhibition analysis showed that the dye is a competitive inhibitor towards glutathione (GSH) and mixed-type inhibitor towards 1-chloro-2,4-dinitrobenzene (CDNB). The present study results suggest that PBMX-R is a useful probe suitable for assessing by kinetic means the drugability of the enzyme in future drug-design efforts.


Subject(s)
Anticarcinogenic Agents/chemistry , Coloring Agents/chemistry , Glutathione Transferase/genetics , Neoplasms/drug therapy , Triazines/chemistry , Amino Acid Sequence/genetics , Anticarcinogenic Agents/therapeutic use , Binding Sites/drug effects , Dinitrochlorobenzene/chemistry , Glutathione/antagonists & inhibitors , Glutathione/genetics , Glutathione Transferase/antagonists & inhibitors , Humans , Kinetics , Neoplasms/enzymology , Neoplasms/genetics , Neoplasms/pathology , Protein Binding/drug effects
4.
Molecules ; 26(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668802

ABSTRACT

The reactive adenosine derivative, adenosine 5'-O-[S-(4-hydroxy-2,3-dioxobutyl)]-thiophosphate (AMPS-HDB), contains a dicarbonyl group linked to the purine nucleotide at a position equivalent to the pyrophosphate region of NAD+. AMPS-HDB was used as a chemical label towards Candida boidinii formate dehydrogenase (CbFDH). AMPS-HDB reacts covalently with CbFDH, leading to complete inactivation of the enzyme activity. The inactivation kinetics of CbFDH fit the Kitz and Wilson model for time-dependent, irreversible inhibition (KD = 0.66 ± 0.15 mM, first order maximum rate constant k3 = 0.198 ± 0.06 min-1). NAD+ and NADH protects CbFDH from inactivation by AMPS-HDB, showing the specificity of the reaction. Molecular modelling studies revealed Arg174 as a candidate residue able to be modified by the dicarbonyl group of AMPS-HDB. Arg174 is a strictly conserved residue among FDHs and is located at the Rossmann fold, the common mononucleotide-binding motif of dehydrogenases. Arg174 was replaced by Asn, using site-directed mutagenesis. The mutant enzyme CbFDHArg174Asn was showed to be resistant to inactivation by AMPS-HDB, confirming that the guanidinium group of Arg174 is the target for AMPS-HDB. The CbFDHArg174Asn mutant enzyme exhibited substantial reduced affinity for NAD+ and lower thermostability. The results of the study underline the pivotal and multifunctional role of Arg174 in catalysis, coenzyme binding and structural stability of CbFDH.


Subject(s)
Arginine/antagonists & inhibitors , Formate Dehydrogenases/antagonists & inhibitors , Phosphates/pharmacology , Saccharomycetales/enzymology , Arginine/genetics , Arginine/metabolism , Formate Dehydrogenases/genetics , Formate Dehydrogenases/metabolism , Models, Molecular , Molecular Structure , Mutagenesis, Site-Directed , Phosphates/chemistry
5.
Cells ; 10(2)2021 02 21.
Article in English | MEDLINE | ID: mdl-33669990

ABSTRACT

Sirtuins (SIRTs) are nicotinamide adenine dinucleotide-dependent histone deacetylases that incorporate complex functions in the mechanisms of cell physiology. Mammals have seven distinct members of the SIRT family (SIRT1-7), which play an important role in a well-maintained network of metabolic pathways that control and adapt the cell to the environment, energy availability and cellular stress. Until recently, very few studies investigated the role of SIRTs in modulating viral infection and progeny. Recent studies have demonstrated that SIRT1 and SIRT2 are promising antiviral targets because of their specific connection to numerous metabolic and regulatory processes affected during infection. In the present review, we summarize some of the recent progress in SIRTs biochemistry and their emerging function as antiviral targets. We also discuss the potential of natural polyphenol-based SIRT modulators to control their functional roles in several diseases including viral infections.


Subject(s)
Metabolic Networks and Pathways , Sirtuins/metabolism , Virus Diseases/metabolism , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Discovery , Humans , Metabolic Networks and Pathways/drug effects , Models, Molecular , Molecular Targeted Therapy , NAD/metabolism , Sirtuins/analysis , Virus Diseases/drug therapy , Viruses/drug effects , Viruses/metabolism
6.
Curr Pharm Des ; 26(40): 5205-5212, 2020.
Article in English | MEDLINE | ID: mdl-32713331

ABSTRACT

BACKGROUND: Glutathione transferases (GSTs) are a family of Phase II detoxification enzymes that have been shown to be involved in the development of multi-drug resistance (MDR) mechanism toward chemotherapeutic agents. GST inhibitors have, therefore, emerged as promising chemosensitizers to manage and reverse MDR. Colchicine (COL) is a classical antimitotic, tubulin-binding agent (TBA) which is being explored as anticancer drug. METHODS: In the present work, the interaction of COL and its derivative 2,3-didemethylcolchicine (2,3-DDCOL) with human glutathione transferases (hGSTA1-1, hGSTP1-1, hGSTM1-1) was investigated by inhibition analysis, molecular modelling and molecular dynamics simulations. RESULTS: The results showed that both compounds bind reversibly to human GSTs and behave as potent inhibitors. hGSTA1-1 was the most sensitive enzyme to inhibition by COL with IC50 22 µΜ. Molecular modelling predicted that COL overlaps with both the hydrophobic (H-site) and glutathione binding site (G-site) and polar interactions appear to be the driving force for its positioning and recognition at the binding site. The interaction of COL with other members of GST family (hGSTA2-2, hGSTM3-3, hGSTM3-2) was also investigated with similar results. CONCLUSION: The results of the present study might be useful in future drug design and development efforts towards human GSTs.


Subject(s)
Antineoplastic Agents , Colchicine , Antineoplastic Agents/pharmacology , Glutathione , Glutathione Transferase , Humans , Microtubules
7.
Antibiotics (Basel) ; 9(4)2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32235599

ABSTRACT

Given the worldwide increase in antibiotic resistant bacteria, bacteriophage derived endolysins represent a very promising new alternative class of antibacterials in the fight against infectious diseases. Endolysins are able to degrade the prokaryotic cell wall, and therefore have potential to be exploited for biotechnological and medical purposes. Staphylococcus epidermidis is a Gram-positive multidrug-resistant (MDR) bacterium of human skin. It is a health concern as it is involved in nosocomial infections. Genome-based screening approach of the complete genome of Staphylococcus virus PH15 allowed the identification of an endolysin gene (Ph28; NCBI accession number: YP_950690). Bioinformatics analysis of the Ph28 protein predicted that it is a two-domain enzyme composed by a CHAP (22-112) and MurNAc-LAA (171-349) domain. Phylogenetic analysis and molecular modelling studies revealed the structural and evolutionary features of both domains. The MurNAc-LAA domain was cloned, and expressed in E. coli BL21 (DE3). In turbidity reduction assays, the recombinant enzyme can lyse more efficiently untreated S. epidermidis cells, compared to other Staphylococcus strains, suggesting enhanced specificity for S. epidermidis. These results suggest that the MurNAc-LAA domain from Ph28 endolysin may represent a promising new enzybiotic.

8.
Int J Biol Macromol ; 128: 493-498, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30685307

ABSTRACT

Study of the interaction of glutathione transferase F1-1 from Zea mays (ZmGSTF1-1) with Cu(II), in the presence of ascorbate showed that the enzyme was rapidly inactivated. The inactivation was time and Cu(II) concentration dependent. The rate of inactivation showed non-linear dependence on Cu(II) concentration, indicating that a reversible complex with the enzyme (KD 84.5 ±â€¯6.5 µM) was formed. The inhibitors S-nitrobenzyl-glutathione or S-methyl-glutathione competes with Cu(II), suggesting the specificity of the chemical modification reaction. SDS-PAGE analysis of the inactivated enzyme showed that the enzyme is fragmented and two new bands of 13 and 11 kDa are formed. This shows that ZmGSTF1-1 was specifically cleaved at a single site, by the locally generated free radicals, through a Fenton-type reaction. Sequencing of the fragments allowed the identification of the Cu(II) binding site on ZmGSTF1-1. The three-dimensional structure of ZmGSTF1-1 reveals that the Cu(II) binding site is localized within the glutathione-binding site (G-site) and His40 and Gln53 are most likely the residues that provide the coordination sites for the Cu(II) binding. These findings were confirmed by site-directed mutagenesis. This copper-induced oxidative cleavage reaction of ZmGSTF1-1 may function as a detoxification route for Cu(II) for protecting plant cells from copper-induced deleterious effects.


Subject(s)
Copper/pharmacology , Glutathione Transferase/metabolism , Proteolysis/drug effects , Zea mays/enzymology , Binding Sites , Copper/metabolism , Glutathione Transferase/chemistry , Models, Molecular , Oxidation-Reduction/drug effects , Protein Conformation
9.
Int J Biol Macromol ; 116: 84-90, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29727648

ABSTRACT

Glutathione transferases (GST, EC. 2.5.1.18) are overexpressed in cancer cell and have been shown to be involved in cancer cell growth, differentiation and the development of multi-drug resistance (MDR) mechanism. Therefore, GST inhibitors are emerging as promising chemosensitizers to manage and reverse MDR. The present work aims to the synthesis, characterization and assessment of a new active-site chimeric inhibitor towards the MDR-involved human GSTP1-1 isoenzyme (hGSTP1-1). The inhibitor [BDA-Fe(III)] was designed to possess two functional groups: the anthraquinone moiety, as recognition element by hGSTP1-1 and a metal chelated complex [iminodiacetic acid-Fe(III)] as a reactive moiety, able to generate reactive oxygen species (ROS), through Fenton reaction. Upon binding of the BDA-Fe(III) to hGSTP1-1 in the presence of hydrogen peroxide, reactive oxygen species (ROS) are generated, which promoted the specific cleavage of hGSTP1-1 in a time and concentration-dependent manner. Electrophoretic analysis showed that each enzyme subunit is cleaved at a single site. Amino acid sequencing as well as molecular modelling studies established that the cleaved peptide bond is located between the amino acids Tyr103 and Ile104. This ligand-induced hGSTP1-1 degradation and inactivation strategy is discussed as a new approach towards chemosensitization of MDR cancer cells.


Subject(s)
Glutathione S-Transferase pi/metabolism , Glutathione Transferase/metabolism , Metals/metabolism , Amino Acids/metabolism , Binding Sites , Ferric Compounds/metabolism , Humans , Hydrogen Peroxide/metabolism , Isoenzymes/metabolism , Ligands , Reactive Oxygen Species/metabolism
10.
Enzyme Microb Technol ; 92: 86-93, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27542748

ABSTRACT

l-Asparaginases (l-ASNase, E.C. 3.5.1.1) catalyze the conversion of l-asparagine to l-aspartic acid and ammonia. In the present work, a new form of l-ASNase from a strain of Erwinia carotovora (EcaL-ASNase) was cloned, expressed in Escherichia coli as a soluble protein and characterized. The enzyme was purified to homogeneity by a single-step procedure comprising ion-exchange chromatography. The properties of the recombinant enzyme were investigated employing kinetic analysis and molecular modelling and the kinetic parameters (Km, kcat) were determined for a number of substrates. The enzyme was used to assemble a microplate-based biosensor that was used for the development of a simple assay for the determination of l-asparagine in biological samples. In this sensor, the enzyme was immobilized by crosslinking with glutaraldehyde and deposited into the well of a microplate in 96-well format. The sensing scheme was based on the colorimetric measurement of ammonia formation using the Nessler's reagent. This format is ideal for micro-volume applications and allows the use of the proposed biosensor in high-throughput applications for monitoring l-asparagine levels in serum and foods samples. Calibration curve was obtained for l-asparagine, with useful concentration range 10-200µΜ. The biosensor had a detection limit of 10µM for l-asparagine. The method's reproducibility was in the order of ±3-6% and l-asparagine mean recoveries were 101.5%.


Subject(s)
Asparaginase/metabolism , Asparagine/analysis , Bacterial Proteins/metabolism , Pectobacterium carotovorum/enzymology , Amino Acid Sequence , Asparaginase/chemistry , Asparaginase/genetics , Asparagine/blood , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biosensing Techniques/methods , Blood Chemical Analysis/methods , Cloning, Molecular , Enzyme Stability , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/genetics , Enzymes, Immobilized/metabolism , Food Analysis/methods , High-Throughput Screening Assays/methods , Humans , Kinetics , Models, Molecular , Pectobacterium carotovorum/genetics , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Reproducibility of Results , Solanum tuberosum/chemistry
11.
Biochim Biophys Acta ; 1864(10): 1315-21, 2016 10.
Article in English | MEDLINE | ID: mdl-27375050

ABSTRACT

The structural and functional role of Arg111 in GSTU4-4 from Glycine max (GmGSTU4-4) was studied by chemical modification followed by site-directed mutagenesis. The arginine-specific reagent 2,3-butanedione (BTD) inactivates the enzyme in borate buffer at pH8.0, with pseudo-first-order saturation kinetics. The rate of inactivation exhibited a non-linear dependence on the concentration of BTD which can be described by reversible binding of reagent to the enzyme (KD 81.2±9.2mM) prior to the irreversible reaction, with maximum rate constants of 0.18±0.01min(-1). Protection from inactivation was afforded by substrate analogues demonstrating the specificity of the reaction. Structural analysis suggested that the modified residue is Arg111, which was confirmed by protein chemistry experiments. Site-directed mutagenesis was used in dissecting the role of Arg111 in substrate binding, specificity and catalytic mechanism. The mutant Arg111Ala enzyme exhibited unchanged Km value for GSH but showed reduced affinity for the xenobiotic substrates, higher kcat and specific activities towards aromatic substrates and lower specific activities towards aliphatic substrates. The biological significance of the specific modification of Arg111 by dicarbonyl compounds and the role of Arg111 as a target for engineering xenobiotic substrate specificity were discussed.


Subject(s)
Arginine/metabolism , Glutathione Transferase/metabolism , Glycine/metabolism , Arginine/genetics , Binding Sites/genetics , Glutathione/genetics , Glutathione/metabolism , Glutathione Transferase/genetics , Glycine/genetics , Kinetics , Models, Molecular , Mutagenesis, Site-Directed/methods , Protein Conformation , Substrate Specificity , Xenobiotics/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...