Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Cancer Res Clin Oncol ; 149(17): 15573-15588, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37648810

ABSTRACT

OBJECTIVE: Although the use of osimertinib can significantly improve the survival time of lung adenocarcinoma (LUAD) patients with epithelial growth factor receptor mutation, eventually drug resistance will limit the survival benefit of most patients. This study aimed to develop a novel prognostic predictive signature based on genes associated with osimertinib resistance. METHODS: The differentially expressed genes (DEGs) associated with osimertinib resistance in LUAD were screened from Gene Expression Omnibus datasets and The Cancer Genome Atlas datasets. Multivariate cox regression was used to establish a prognostic signature, and then a nomogram was developed to predict the survival probability of LUAD patients. We used ROC curve and DCA curve to evaluate its clinical prediction accuracy and net benefit. In addition, the differentially expressed genes significantly associated with prognosis were selected for immune infiltration analysis and drug sensitivity analysis, and their roles in the progression of lung adenocarcinoma were verified by in vitro experiments. RESULTS: Our evaluation results indicated that the new nomogram had higher clinical prediction accuracy and net benefit value than the TN nomogram. Further analysis showed that patients with low STRIP2 expression had a higher level of immune response, and may be more likely to benefit from immune checkpoint inhibitors and conventional antitumor drugs. This may help to select more precise and appropriate therapy for LUAD patients with osimertinib resistance. Furthermore, in vitro experiments showed that STRIP2 promoted the LUAD cells proliferation, migration and invasion. This further demonstrates the importance of this gene signature for prognostic prediction. CONCLUSION: We developed a reliable prognostic model based on DEGs associated with osimertinib resistance and screened for biomarker that can predict the immune response in LUAD patients, which may help in the selection of treatment regimens after osimertinib resistance.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Prognosis , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Acrylamides/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics
2.
Dig Dis Sci ; 68(5): 1728-1734, 2023 05.
Article in English | MEDLINE | ID: mdl-36547820

ABSTRACT

BACKGROUND: Water delivery tube reflux during gastrointestinal endoscopy examination is widespread and it is the leading cause of water injection bottle pollution. AIM: To evaluate the application effect of a new anti-reflux water injection tube device in preventing the contamination of endoscopy water injection bottles. METHODS: A total of 520 cases received gastrointestinal endoscopy examination were included. Patients were randomly divided into the experimental and control group. The experimental group used the anti-reflux injection tube device to assist with water injection, and the control group used the ordinary delivery tube. After every five cases of gastrointestinal endoscopy, water from the injection bottles was collected. Visual inspection, crystalline violet staining, microbial culture, and microbial species analysis were performed to analyze the contamination state of the water samples. RESULTS: The contamination rate in the experimental group was 5.66%, significantly lower than 76.47% in the control group. Crystalline violet staining confirmed that microorganisms existed in contaminated water samples. Microbiological culture results showed that the experimental group's undetectable rate of bacteria and fungi was 100%, significantly higher than that of the control group (19.61% for bacteria and 25.49% for fungi). The mean values of the total bacterial and fungal colonies of the control samples were 9.80 × 106 cfu/ml and 9.18 × 106 cfu/ml, respectively. The microbial species in the contaminated samples of the control group were Pseudomonas aeruginosa, Escherichia coli, and Proteus mirabilis. CONCLUSION: The anti-reflux water injection tube device can effectively prevent the contamination of the endoscopy water injection bottles caused by the reflux of the ordinary water supply tube.


Subject(s)
Bacteria , Water , Humans , Endoscopy, Gastrointestinal , Pseudomonas aeruginosa , Culture Media
3.
Front Microbiol ; 14: 1291699, 2023.
Article in English | MEDLINE | ID: mdl-38188562

ABSTRACT

Objective: Carcinoid syndrome (CS) commonly results from neuroendocrine tumors. While active substances are recognized as the main causes of the typical symptoms such as diarrhea and skin flush, the cause-and-effect relationship between gut microbiota abundance and CS remains unclear. Methods: The Single Nucleotide Polymorphisms (SNPs) related to gut microbiota abundance and CS were obtained from the GWAS summary data. The inverse variance weighted (IVW) method was used to assess the causal relationship between gut microbiota abundance and CS. Additionally, the MR-Egger, Weighted Median model, and Weighted model were employed as supplementary approaches. The heterogeneity function of the TwoSampleMR package was utilized to assess whether SNPs exhibit heterogeneity. The Egger intercept and Presso test were used to assess whether SNPs exhibit pleiotropy. The Leave-One-Out test was employed to evaluate the sensitivity of SNPs. The Steiger test was utilized to examine whether SNPs have a reverse causal relationship. A bidirectional mendelian randomization (MR) study was conducted to elucidate the inferred cause-and-effect relationship between gut microbiota abundance and CS. Results: The IVW results indicated a causal relationship between 6 gut microbiota taxa and CS. Among the 6 gut microbiota taxa, the genus Anaerofilum (IVW OR: 0.3606, 95%CI: 0.1554-0.8367, p-value: 0.0175) exhibited a protective effect against CS. On the other hand, the family Coriobacteriaceae (IVW OR: 3.4572, 95%CI: 1.0571-11.3066, p-value: 0.0402), the genus Enterorhabdus (IVW OR: 4.2496, 95%CI: 1.3314-13.5640, p-value: 0.0146), the genus Ruminiclostridium6 (IVW OR: 4.0116, 95%CI: 1.2711-12.6604, p-value: 0.0178), the genus Veillonella (IVW OR: 3.7023, 95%CI: 1.0155-13.4980, p-value: 0.0473) and genus Holdemanella (IVW OR: 2.2400, 95%CI: 1.0376-4.8358, p-value: 0.0400) demonstrated a detrimental effect on CS. The CS was not found to have a reverse causal relationship with the above 6 gut microbiota taxa. Conclusion: Six microbiota taxa were found to have a causal relationship with CS, and further randomized controlled trials are needed for verification.

4.
Front Pharmacol ; 13: 1071365, 2022.
Article in English | MEDLINE | ID: mdl-36479196

ABSTRACT

Resistance to targeted drugs is now a challenging clinical problem in the treatment of non-small cell lung cancer (NSCLC). So far, there are no approved targeted therapeutic drugs for patients with disease progression after the third-generation epidermal growth factor receptor-tyrosine kinase inhibitor osimertinib resistance (OR). Super-enhancers (SEs) are large clusters of transcriptional enhancers that drive gene expression. In this study, we aimed to explore the potential pathogenic SEs and their driven genes in OR NSCLC. OR cell line was established by exposure of H1975 cells to incremental dosing of osimertinib. RNA-sequencing and H3K27ac ChIP-sequencing were used to identify the differential expressed genes (DEGs) and SEs in parental and resistant cells. Gene ontology analysis for the OR-specific SEs-associated genes showed that histone citrullination, protein citrullination, and peptidyl-arginine modification are the top three biological processes, and the DEGs involved in these biological processes, including peptidyl arginine deiminase 1 (PADI1), PADI2, and PADI3. Realtime-PCR and western blot detections confirmed these genes were highly expressed in OR cells. SE inhibitor decreases their expression, ensuring that SEs regulate their transcriptional expressions. The PADI inhibitor inhibited OR cells' proliferation, invasion, and colony formation. This study demonstrates that SE-driven PADI family genes are potential biomarkers and targets for OR NSCLC.

5.
Phytomedicine ; 104: 154301, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35792448

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a refractory disease. Therefore, developing effective therapies for IPF is the need of the hour. PURPOSE: Yiqi Huoxue Formula (YQHX) is an herbal formula comprising three herbal medicines: Ligusticum chuanxiong Hort. (Chuanxiong Rhizoma, CR), Panax notoginseng (Burk.) F. H. Chen (Notoginseng Radix Et Rhizoma, NR) and Panax ginseng C. A. Mey. (Ginseng Radix Et Rhizoma, GR). This study aims to determine the anti-pulmonary fibrosis effect of YQHX and explore its mechanism of action. STUDY: Design and Methods: The chemical components in the GR, CR and NR extracts were identified by High Performance Liquid Chromatography. A TGF-ß1-induced myofibroblast cell model was used to test the anti-fibrosis effect of GR, CR, NR and YQHX. RNA-sequencing was used to identify the differentially expressed genes (DEGs) after YQHX treatment. Subsequently, gene enrichment analysis and key transcription factors (TFs) prediction for YQHX-regulated DEGs was performed. The active constituents of GR, CR and NR were obtained from the Traditional Chinese Medicine Database and Analysis Platform. Targets of the active constituents were predicted using the similarity ensemble approach search server and Swiss Target Prediction tool. YQHX-targeted key TFs that transcribed the DEGs were screened out. Then, the effect of YQHX on the bleomycin-induced pulmonary fibrosis mouse model was studied. Finally, one of the predicted TFs, STAT3, was selected to validate the prediction accuracy. RESULTS: Seven, two, and five compounds were identified in the GR, CR, and NR extracts, respectively. YQHX and its constituents-GR, CR and NR-inhibited the expression of fibrotic markers, including α -SMA and fibronectin, indicating that YQHX inhibited TGF-ß1-induced myofibroblast activation. RNA-sequencing identified 291 genes that were up-regulated in the TGF-ß1 group but down-regulated after YQHX treatment. In total, 55 key TFs that transcribed YQHX-regulated targets were predicted. A regulatory network of 24 active ingredients and 232 corresponding targets for YQHX was established. Among YQHX's predicted targets, 20 were TFs. On overlapping YQHX-targeted TFs and DEGs' key TFs, six key TFs, including HIF1A, STAT6, STAT3, PPARA, DDIT3 and AR, were identified as the targets of YQHX. Additionally, YQHX alleviated bleomycin-induced pulmonary fibrosis in a mouse model by inhibiting the phosphorylation of STAT3 in the lungs of pulmonary fibrosis mice. CONCLUSIONS: This study provides pharmacological support for the use of YQHX in the treatment of IPF. The potential mechanism of action of YQHX is speculated to involve the modulation of core TFs and inhibition of pathogenetic gene expressions in IPF.


Subject(s)
Drugs, Chinese Herbal , Idiopathic Pulmonary Fibrosis , Panax , Animals , Bleomycin , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Fibrosis , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Mice , Network Pharmacology , RNA , Transcription Factors/genetics , Transforming Growth Factor beta1
8.
Front Pharmacol ; 11: 591400, 2020.
Article in English | MEDLINE | ID: mdl-33381039

ABSTRACT

Sanguisorba officinalis L. (SA) is a common herb for cancer treatment in the clinic, particularly during the consolidation phase to prevent occurrence or metastasis. Nevertheless, there are limited studies reporting the molecular mechanisms about its anti-metastatic function. It is well demonstrated that autophagy is one of the critical mechanisms accounting for metastasis and anti-cancer pharmacological actions of Chinese herbs. On the threshold, the regulatory effects and molecular mechanisms of SA in suppressing autophagy-related breast cancer metastasis were investigated in this study. In vitro findings demonstrated that SA potently suppressed the proliferation, colony formations well as metastasis process in triple-negative breast cancer. Network and biological analyses predicted that SA mainly targeted caveolin-1 (Cav-1) to induce anti-metastatic effects, and one of the core mechanisms was via regulation of autophagy. Further experiments-including western blotting, transmission electron microscopy, GFP-mRFP-LC3 immunofluorescence, and lysosomal-activity detection-validated SA as a potent late-stage autophagic inhibitor by increasing microtubule-associated light chain 3-II (LC3-II) conversion, decreasing acidic vesicular-organelle formation, and inducing lysosomal dysfunction even under conditions of either starvation or hypoxia. Furthermore, the anti-autophagic and anti-metastatic activity of SA was Cav-1-dependent. Specifically, Cav-1 knockdown significantly facilitated SA-mediated inhibition of autophagy and metastasis. Furthermore, hypoxia inducible factor-1α (Hif-1α) overexpression attenuated the SA-induced inhibitory activities on Cav-1, autophagy, and metastasis, indicating that SA may have inhibited autophagy-related metastasis via Hif-1α/Cav-1 signaling. In both mouse breast cancer xenograft and zebrafish xenotransplantation models, SA inhibited breast cancer growth and inhibited late-phase autophagy in vivo, which was accompanied by suppression of Hif-1α/Cav-1 signaling and the epithelial-mesenchymal transition. Overall, our findings not only indicate that SA acts as a novel late-phase autophagic inhibitor with anti-metastatic activities in triple-negative breast cancer, but also highlight Cav-1 as a regulator in controlling late-phase autophagic activity.

9.
Biomed Pharmacother ; 120: 109519, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31629951

ABSTRACT

XIAOPI formula is a national approved drug prescribed to patients with high breast cancer risk. Previously we demonstrated that XIAOPI formula could inhibit breast cancer metastasis via suppressing CXCL1 expression, and postulated that "autophagy in cancer" might be one of its most core anti-cancer mechanisms. However, whether XIAOPI formula could be simultaneously applied with chemodrugs and their synergistic mechanisms are still remained unknown. In the present study, XIAOPI formula at non-cytotoxic doses could synergistically enhance the chemosensitivity of breast cancer cells MDA-MB-231 and MCF-7. We found that rapamycin-induced autophagy could reduce the chemosensitivity of breast cancer cells to XIAOPI formula, and the autophagy suppression and chemosensitizing activity of this formula was CXCL1-dependent. The evidence came from that XIAOPI formula was associated with a lower expression of CXCL1 combined with either rapamycin or taxol alone. Besides, the inhibitory effect of XIAOPI formula on the LC3-II and ABCG2 signals was weakened following CXCL1 over-expression, whereas P62 upregulation induced by XIAOPI formula was re-declined. A high throughput - qPCR (HT-qPCR) assay identified HMGB1 as the main autophagic target of XIAOPI formula in chemosensitizing breast cancer. and furhter validation suggested XIAOPI formula exerted chemosensitivity mainly via CXCL1/HMGB1 autophagic axis. Finally, we generated both mice and zebrafish xenotransplantation models bearing MDA-MB-231 breast cancer cells, and found that XIAOPI formula safely enhanced in vivo taxol chemosensitivity on breast cancer. Taken together, XIAOPI formula is a potential adjuvant drug via inhibiting CXCL1/HMGB1-mediated autophagy for breast cancer treatment with good safety.


Subject(s)
Breast Neoplasms/drug therapy , Chemokine CXCL1/metabolism , Drug Resistance, Neoplasm/drug effects , Drugs, Chinese Herbal/pharmacology , HMGB1 Protein/metabolism , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Autophagy , Cell Line , Cell Survival , Chemokine CXCL1/genetics , Drug Synergism , Epirubicin/metabolism , Female , Gene Expression Regulation/drug effects , HMGB1 Protein/genetics , Human Umbilical Vein Endothelial Cells , Humans , Mice , Mice, Nude , Neoplasms, Experimental/drug therapy , Oviposition/drug effects , Paclitaxel/administration & dosage , Paclitaxel/pharmacology , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...