Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 12(1): 588, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31842995

ABSTRACT

BACKGROUND: Theileria parva causes East Coast fever (ECF), one of the most economically important tick-borne diseases of cattle in sub-Saharan Africa. A live immunisation approach using the infection and treatment method (ITM) provides a strong long-term strain-restricted immunity. However, it typically induces a tick-transmissible carrier state in cattle and may lead to spread of antigenically distinct parasites. Thus, understanding the genetic composition of T. parva is needed prior to the use of the ITM vaccine in new areas. This study examined the sequence diversity and the evolutionary and biogeographical dynamics of T. parva within the African Great Lakes region to better understand the epidemiology of ECF and to assure vaccine safety. Genetic analyses were performed using sequences of two antigen-coding genes, Tp1 and Tp2, generated among 119 T. parva samples collected from cattle in four agro-ecological zones of DRC and Burundi. RESULTS: The results provided evidence of nucleotide and amino acid polymorphisms in both antigens, resulting in 11 and 10 distinct nucleotide alleles, that predicted 6 and 9 protein variants in Tp1 and Tp2, respectively. Theileria parva samples showed high variation within populations and a moderate biogeographical sub-structuring due to the widespread major genotypes. The diversity was greater in samples from lowlands and midlands areas compared to those from highlands and other African countries. The evolutionary dynamics modelling revealed a signal of selective evolution which was not preferentially detected within the epitope-coding regions, suggesting that the observed polymorphism could be more related to gene flow rather than recent host immune-based selection. Most alleles isolated in the Great Lakes region were closely related to the components of the trivalent Muguga vaccine. CONCLUSIONS: Our findings suggest that the extensive sequence diversity of T. parva and its biogeographical distribution mainly depend on host migration and agro-ecological conditions driving tick population dynamics. Such patterns are likely to contribute to the epidemic and unstable endemic situations of ECF in the region. However, the fact that ubiquitous alleles are genetically similar to the components of the Muguga vaccine together with the limited geographical clustering may justify testing the existing trivalent vaccine for cross-immunity in the region.


Subject(s)
Antigenic Variation , Antigens, Protozoan/genetics , Theileria parva/genetics , Africa, Central , Antigens, Protozoan/immunology , Genotype , Polymorphism, Genetic , Sequence Analysis, DNA , Theileria parva/immunology
2.
Trans R Soc Trop Med Hyg ; 112(8): 405-407, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30085272

ABSTRACT

The mosquito fauna of the Democratic Republic of Congo remains understudied, including that of the province of Sud Kivu. To improve understanding of species presenting Sud Kivu, adult mosquitoes were collected from houses and larvae were collected from standing water at altitudes between 1627 and 1875 m above sea level. Morphological and molecular methods were used to identify the species of Anopheles collected. Six species were found, including several primary and potential secondary malaria vectors. Further work is needed to characterize mosquito populations in Sud Kivu, as well as to improve methods for identifying Anopheles in general.


Subject(s)
Anopheles/genetics , Malaria , Mosquito Vectors/genetics , Animals , Democratic Republic of the Congo , Humans , Malaria/transmission , Species Specificity
3.
Parasit Vectors ; 11(1): 329, 2018 May 31.
Article in English | MEDLINE | ID: mdl-29855375

ABSTRACT

BACKGROUND: The ixodid tick Rhipicephalus appendiculatus is the main vector of Theileria parva, wich causes the highly fatal cattle disease East Coast fever (ECF) in sub-Saharan Africa. Rhipicephalus appendiculatus populations differ in their ecology, diapause behaviour and vector competence. Thus, their expansion in new areas may change the genetic structure and consequently affect the vector-pathogen system and disease outcomes. In this study we investigated the genetic distribution of R. appendiculatus across agro-ecological zones (AEZs) in the African Great Lakes region to better understand the epidemiology of ECF and elucidate R. appendiculatus evolutionary history and biogeographical colonization in Africa. METHODS: Sequencing was performed on two mitochondrial genes (cox1 and 12S rRNA) of 218 ticks collected from cattle across six AEZs along an altitudinal gradient in the Democratic Republic of Congo, Rwanda, Burundi and Tanzania. Phylogenetic relationships between tick populations were determined and evolutionary population dynamics models were assessed by mismach distribution. RESULTS: Population genetic analysis yielded 22 cox1 and 9 12S haplotypes in a total of 209 and 126 nucleotide sequences, respectively. Phylogenetic algorithms grouped these haplotypes for both genes into two major clades (lineages A and B). We observed significant genetic variation segregating the two lineages and low structure among populations with high degree of migration. The observed high gene flow indicates population admixture between AEZs. However, reduced number of migrants was observed between lowlands and highlands. Mismatch analysis detected a signature of rapid demographic and range expansion of lineage A. The star-like pattern of isolated and published haplotypes indicates that the two lineages evolve independently and have been subjected to expansion across Africa. CONCLUSIONS: Two sympatric R. appendiculatus lineages occur in the Great Lakes region. Lineage A, the most diverse and ubiquitous, has experienced rapid population growth and range expansion in all AEZs probably through cattle movement, whereas lineage B, the less abundant, has probably established a founder population from recent colonization events and its occurrence decreases with altitude. These two lineages are sympatric in central and eastern Africa and allopatric in southern Africa. The observed colonization pattern may strongly affect the transmission system and may explain ECF endemic instability in the tick distribution fringes.


Subject(s)
Arachnid Vectors/genetics , Genetic Variation , Rhipicephalus/genetics , Theileria parva/physiology , Theileriasis/parasitology , Africa/epidemiology , Animals , Arachnid Vectors/parasitology , Cattle , Genetic Structures , Genetics, Population , Mitochondria/genetics , Phylogeny , Phylogeography , Population Dynamics , Rhipicephalus/parasitology , Theileriasis/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...