Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Contam Hydrol ; 265: 104384, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38880032

ABSTRACT

With increasing phosphate (P) entering the environment during agricultural application, the subsurface flow of particular P has been recently discussed as a vital P transport pathway. Iron (oxyhydr)oxide colloid-facilitated P transport is critical for iron and P biogeochemical processes in the subsurface. This study investigated the ferrihydrite colloid-facilitated P transport through adsorption and column experiments under different P concentrations and three pH conditions. Increased P loading on ferrihydrite colloids decreased the transport of ferrihydrite colloids (< 8.0%) under acid conditions through pore straining and irreversible attachment. Under neutral and alkaline conditions, ferrihydrite colloids exhibited more negative surfaces and smaller diameters with increasing P, which further enhanced ferrihydrite colloid transport (maximum to 95.6%). Ferrihydrite colloid-facilitated P transport was limited under acid conditions, and it was 10% - 57% enhancement under neutral and alkaline conditions with increasing P adsorption. Under neutral conditions, ferrihydrite colloid-facilitated P transport was strongest (maximum to 68.84%) because of its stronger ferrihydrite colloid transport than under acid conditions and larger P adsorption capacity than under alkaline conditions. Our findings indicate that the facilitated transport of ferrihydrite colloids in the presence of P may be appreciable in iron and phosphate-rich soil and subsurface systems, which is essential for evaluating the fate of iron and iron-facilitated P and potential environmental risks of P transport in the subsurface.

2.
Int J Biol Macromol ; 253(Pt 4): 126970, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37730002

ABSTRACT

Resistant dextrin or resistant maltodextrin (RD), a short-chain glucose polymer that is highly resistant to hydrolysis by human digestive enzymes, has shown broad developmental prospects in the food industry and has gained substantial attention owing to its lack of undesirable effects on the sensory features of food or the digestive system. However, comprehensive fundamental and application information on RD and how RD improves anti-diabetes and obesity have not yet been received. Therefore, the characterization, health benefits and application of RD in various fields are summarized and discussed in the current study. Typically, RD is prepared by the acid thermal method and possesses excellent physicochemical properties, including low viscosity, high solubility, storage stability, and low retro-gradation, which are correlated with its low molecular weight (Mw) and non-digestible glycosidic linkages. In contrast, RD prepared by the simultaneous debranching and crystallization method has low solubility and high crystallinity. The ingestion of RD can positively affect metabolic diseases (diabetes and obesity) in animals and humans by producing short-chain fatty acids (SCFAs), and facilitating the inflammatory response. Moreover, RD has been widely used in the beverage, dairy products, and dessert industries due to its nutritional value and textural properties without unacceptable quality loss. More studies are required to further explore RD application potential in the food industry and its role in the management of different chronic metabolic disorders.


Subject(s)
Dextrins , Food , Animals , Humans , Dextrins/chemistry , Obesity/drug therapy , Viscosity , Digestion
3.
Heliyon ; 9(7): e17816, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37483786

ABSTRACT

This study was undertaken to see how microbial consortia influenced maize development and yield under salt-affected conditions. The efficacy of the pre-isolated bacterial strains Burkholderia phytofirmans, Bacillussubtilis, Enterobacter aerogenes, and Pseudomonas syringae and Pseudomonas fluorescens to decrease the detrimental effects of salt on maize was tested in four distinct combinations using Randomized Complete Block Design with three replicates. The results revealed that these strains were compatible and collaborated synergistically, with an 80% co-aggregation percentage under salt-affected conditions. Following that, these strains were tested for their ability to increase maize growth and yield under salt-affected field conditions. The photosynthetic rate (11-50%), relative water content (10-34%), and grain yield (13-21%) of maize were all increased by these various combinations. However, when Burkholderia phytofirmans, Enterobacter aerogenes and Pseudomonas fluorescens were combined, the greatest increase was seen above the un-inoculated control. Furthermore, as compared to the un-inoculated control, the same combination resulted in a 1.5-fold increase in catalase and a 2.0-fold increase in ascorbate concentration. These findings showed that a multi-strain consortium might boost maize's total yield response as a result of better growth under salt stress.

4.
Crit Rev Food Sci Nutr ; : 1-13, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37039080

ABSTRACT

Bioactive ingredients are part of the food chain and are responsible for numerous health benefits. Subcritical low temperature extraction has been employed to acquire bioactive ingredients because of its excellent properties, such as energy conservation, low temperature, elimination of residual solvent, and high extraction yield and quality. This review aims to provide a clear picture of the basics of subcritical-temperature extraction, its bioactive ingredient extraction efficiency, and possible applications in the agro-food industry. This review suggested that the extraction temperature, time, co-solvents, solid-fluid ratio, and pressure impacted the extraction efficiency of bioactive ingredients from foods and food by-products. Subcritical solvents are appropriate for extracting low polar ingredients, while the inclusion of co-solvents could extract medium and high polar substances. Bioactive ingredients from foods and food by-products can be used as antioxidants, colorants, and nutritional supplements. Additionally, this technology could remove pesticide residues in tea, concentrate edible proteins, and reduce cigarette tar. A new trend toward using subcritical low temperature extraction in extracting bioactive ingredients will acquire momentum.

5.
Chemosphere ; 327: 138544, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36996923

ABSTRACT

Microplastics (MPs) are emerging pollutants that interact extensively with dissolved organic matter (DOM) and this influences the environmental behavior of MPs in aqueous ecosystems. However, the effect of DOM on the photodegradation of MPs in aqueous systems is still unclear. The photodegradation characteristics of polystyrene microplastics (PS-MPs) in an aqueous system in the presence of humic acid (HA, a signature compound of DOM) under ultraviolet light conditions were investigated in this study through Fourier transform infrared spectroscopy coupled with two-dimensional correlation analysis, electron paramagnetic resonance, and gas chromatography-mass spectrometry (GC/MS). HA was found to promote higher levels of reactive oxygen species (0.631 mM of ▪OH), which accelerated the photodegradation of PS-MPs, with a higher degree of weight loss (4.3%), higher level of oxygen-containing functional groups, and lower average particle size (89.5 µm). Likewise, GC/MS analysis showed that HA contributed to a higher content of oxygen-containing compounds (42.62%) in the photodegradation of PS-MPs. Moreover, the intermediates and final degradation products of PS-MPs with HA were significantly different in the absence of HA during 40 days of irradiation. These results provide an insight into the co-existing compounds on the degradation and migration processes of MP and also support further research toward the remediation of MPs pollution in aqueous ecosystems.


Subject(s)
Microplastics , Water Pollutants, Chemical , Polystyrenes/chemistry , Plastics , Ultraviolet Rays , Humic Substances/analysis , Ecosystem , Dissolved Organic Matter , Water Pollutants, Chemical/analysis , Oxygen/analysis
6.
Sci Total Environ ; 875: 162356, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36822427

ABSTRACT

Biodegradable plastic bags (BPBs) to collect food waste and microplastics (MPs) produced from their biodegradation have received considerable scientific attention recently. Therefore, the current study was carried out to assess the co-composting efficiency of biodegradable plastic bags (polylactic acid (PLA) + polybutylene terephthalate (PBAT) + ST20 and PLA + PBAT+MD25) and food waste. The variations in greenhouse gas (GHG) emissions, microbial community and compost fertility were likewise assessed. Compared with the control, PLA + PBAT+ST20 and PLA + PBAT+MD25 both accelerated organic matter degradation and increased temperature. Moreover, PLA + PBAT+ST20 aggravated CH4 and CO2 emissions by 12.10 % and 11.01 %, respectively. PLA + PBAT+MD25 decreased CH4 and CO2 emissions by 5.50 % and 9.12 %, respectively. Meanwhile, compared with PLA + PBAT+ST20, the combined effect of plasticizer and inorganic additive in PLA + PBAT+MD25, reduced the NO3--N contents, seed germination index (GI) and compost maturity. Furthermore, adding BPBs changed the richness and diversity of the bacterial community (Firmicutes, Proteobacteria and Bacteroidetes). Likewise, redundancy analysis (RDA) showed that the co-compost system of BPBs and food waste accelerated significantly bacterial community succession from Firmicutes and Bacteroidetes at the initial stage to Proteobacteria and Actinobacteria at the mature stage, increased co-compost temperature to over 64 °C and extended thermophilic composting phase, and promoted the degradation of MPs. Additionally, according to structural equation model quantification results, the inorganic additive of PLA + PBAT+MD25 had more serious toxicity to microorganisms and had significantly adverse effects on GI through CO2-C (λ = -0.415, p < 0.05) and NO3--N (λ = -0.558, p < 0.001), thus reduced compost fertility and quality. The results also indicated that the BPBs with ST20 as an additive could be more suitable for industrial composting than the BPBs with MD25 as an additive. This study provided a vital basis for understanding the potential environmental and human health risks of the MPs' generated by the degradation of BPBs in compost.


Subject(s)
Biodegradable Plastics , Composting , Greenhouse Gases , Microbiota , Refuse Disposal , Humans , Composting/methods , Microplastics , Carbon Dioxide , Food , Polyesters/chemistry , Soil/chemistry
7.
J Environ Manage ; 323: 116218, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36108514

ABSTRACT

Rice straw and swine wastewater are abundant, easy to obtain, and inexpensive biomass materials. Anaerobic digestion of rice straw and swine wastewater effectively regulates the carbon-to-nitrogen ratio and also improves methane production efficiency. The dense lignocellulosic structure, unsuitable carbon-to-nitrogen ratio, and light texture of rice straw hinder its application in anaerobic digestion. Effective pretreatment technologies can improve degradation efficiency and methane production. Our study is the first to apply domesticated paddy soil microbes to enhance the efficiency of hydrolytic acidification of rice straw and swine wastewater at varying temperatures and times. The results show that the highest total organic carbon (1757.2 mg/L), soluble chemical oxygen demand (5341.7 mg/L), and organic acid concentration (4134.6 mg/L) appeared in the hydrolysate after five days of hydrolytic acidification at 37 °C. Moreover, the use of hydrolysate produced 13% more gas and reduced the anaerobic digestion period by ten days compared to the untreated control. This suggests that using domesticated paddy soil microbes as a pretreatment might be a sustainable and cost-effective strategy for improving the degradation efficacy and methane production from lignocellulosic materials.


Subject(s)
Oryza , Anaerobiosis , Animals , Biofuels , Carbon/metabolism , Digestion , Methane/metabolism , Nitrogen/metabolism , Oryza/chemistry , Soil/chemistry , Swine , Temperature , Wastewater
8.
Chemosphere ; 307(Pt 2): 135943, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35948100

ABSTRACT

Information on the distribution and interaction of microplastics (MPs) and humic acids (HAs) in river sediment has not been fully explored. This study assessed the distribution and interaction of MPs with HAs at different depths in river sediments. The results delineated that the average abundance of MPs in the 0-10 cm layer (190 ± 20 items/kg) was significantly lower than that in the 11-20 cm and 21-30 cm layers (211 ± 10 items/kg and 238 ± 18 items/kg, respectively). Likewise, the large MP particles mainly existed in the 0-10 cm layer (31.53%-37.87%), while small MP particles were found in the 21-30 cm layers (73.23%-100%). Moreover, HAs in MPs showed a transformation from low molecular weight to high molecular weight with an increase in depth from 0-10 cm to 21-30 cm, which may contribute to the distribution of MPs in the river sediments. These results provide new insight into the migration of MP pollution in river sediments, but further research needs to assess the interaction of MP with HA for mitigating MP pollution in river sediment.


Subject(s)
Microplastics , Water Pollutants, Chemical , Environmental Monitoring/methods , Geologic Sediments , Humic Substances , Plastics , Rivers , Water Pollutants, Chemical/analysis
9.
Article in English | MEDLINE | ID: mdl-35682198

ABSTRACT

Food waste, as a major part of municipal solid waste, has been increasingly generated worldwide. Efficient and feasible utilization of this waste material for biomanufacturing is crucial to improving economic and environmental sustainability. In the present study, black soldier flies (BSF) larvae were used as carriers to treat and upcycle food waste. Larvae of the BSF were incubated with UV light for 10, 20, and 30 min at a wavelength of 257.3 nm and an intensity of 8 W. The food waste utilization efficiency, antioxidant assays, antibacterial activity, and bioactive metabolites without and with UV treatment were determined and compared. Results showed that the BSF larvae feed utilization rate was around 75.6%, 77.7%, and 71.2% after UV treatment for 10, 20, and 30 min respectively, contrasting with the non-UV induced group (73.7%). In addition, it was perceived that the UV exposure enhanced antioxidant and antimicrobial properties of BSF extracts, and the maximum values were observed after 20 min UV induction time. Moreover, UV-induced BSF extracts showed an improved metabolic profile than the control group, with a change in the amino acids, peptides, organic acids, lipids, organic oxides, and other derivatives. This change in metabolomics profile boosted environmental signaling, degradation of starch, amino acids, sugars, and peptide metabolism. It was concluded that the bioconversion of food wastes using UV-induced BSF larvae can enhance the generation of a variety of functional proteins and bioactive compounds with potent antioxidant and antimicrobial activity. However, more studies are required to exploit the efficiency of UV treatment in improving BSF's potential for upcycling of food wastes.


Subject(s)
Diptera , Refuse Disposal , Waste Management , Amino Acids , Animals , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Diptera/microbiology , Food , Larva , Metabolomics , Solid Waste , Ultraviolet Rays
10.
Article in English | MEDLINE | ID: mdl-35457790

ABSTRACT

The rapid development of biogas plants in China has generated large quantities of digestate. The disparity between the continuity of biogas plant operation and the seasonality of digestate utilization has led to the need to store digestate. Therefore, untargeted profiling of bioactive compounds in the digestate stored under aerobic and anaerobic conditions was performed. The antioxidant and antifungal activity of digestate stored under varying conditions was likewise assessed. The results delineated that digestate storage under varying conditions brought about the degradation of organic acids, alkenes, aldehydes, alcohols, ketones, ethers, amino acids and their derivatives, and esters, leading to the stabilization of digestate components. Together, these new data revealed that digestate storage for up to 20 days under aerobic conditions promotes glycine, serine, and threonine degradation pathways and enhances biotin and vitamins production. In contrast, anaerobic storage enhances the taurine and hypotaurine metabolic pathways and increases the derivation of antimicrobial substances, such as indole alkaloids. Moreover, digestate storage under anaerobic conditions promotes antioxidant and antifungal activity more than storage under aerobic conditions. These findings can contribute to the future development of high-value agricultural products from digestate and the sustainability of biogas plants. Further studies are required for the untargeted metabolomic of digestate under storage to explore the underlying mechanisms of promoting disease resistance by the digestate upon land application.


Subject(s)
Antifungal Agents , Biofuels , Anaerobiosis , Antifungal Agents/pharmacology , Antioxidants/pharmacology , Metabolomics
11.
Sci Rep ; 12(1): 2799, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35181682

ABSTRACT

Food waste is becoming more prevalent, and managing it is one of the most important issues in terms of food safety. In this study, functional proteins and bioactive peptides produced from the enzymatic digestion of black soldier fly (Hermetia illucens L., BSF) fed with food wastes were characterized and quantified using proteomics-based analysis. The results revealed approximately 78 peptides and 57 proteins, including 40S ribosomal protein S4, 60S ribosomal protein L8, ATP synthase subunit alpha, ribosomal protein S3, Histone H2A, NADP-glutamate dehydrogenase, Fumarate hydratase, RNA helicase, Chitin binding Peritrophin-A, Lectin C-type protein, etc. were found in BSF. Furthermore, functional analysis of the proteins revealed that the 60S ribosomal protein L5 (RpL5) in BSF interacted with a variety of ribosomal proteins and played a key role in the glycolytic process (AT14039p). Higher antioxidant activity was found in peptide sequences such as GYGFGGGAGCLSMDTGAHLNR, VVPSANRAMVGIVAGGGRIDKPILK, AGLQFPVGR, GFKDQIQDVFK, and GFKDQIQDVFK. It was concluded that the bioconversion of food wastes by BSF brought about the generation of a variety of functional proteins and bioactive peptides with strong antioxidant activity. However, more studies are required to exploit BSF's potential in the value addition of food wastes.


Subject(s)
Diptera/genetics , Larva/genetics , Peptides/genetics , Proteins/genetics , Animals , Antioxidants/pharmacology , Diptera/metabolism , Food/adverse effects , Food Safety , Larva/metabolism , Proteomics/methods , Refuse Disposal , Solid Waste
12.
Water Res ; 204: 117659, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34537629

ABSTRACT

Struvite formed from digested poultry slurries can serve as an alternative to chemical fertilizers; however, the biological safety of such products is questionable. Therefore, quantification and inactivation of foodborne pathogens existing in struvite are important. Herein, the dynamics of foodborne pathogens' (Streptococcus faecalis, S. typhimurium, Clostridium perfringens, and Escherichia coli) living status, whether culturable and viable but non-culturable (VBNC) in struvite, were quantified for the first time. Meanwhile, inactivation technologies, namely high-humidity hot air impingement blanching (HHAIB), cold plasma, and hot air treatment, were evaluated and compared for their potential to inactivate/kill foodborne pathogens in struvite. An increase in precipitation pH from 9.0 to 11.0 decreased the culturable count of pathogens in the struvite from 75 to 86% to 7-20%, while the VBNC pathogen counts increased from 16 to 24% to 35-55%. Among the tested inactivation technologies, the HHAIB treatment at 130 °C for 120 s killed approximately 68-79% of foodborne pathogens in struvite precipitated at pH 9.0. VBNC pathogens increased from 16 to 24% to 57-68% after HHAIB treatment at 130 °C for 120 s. Struvite treatment with different inactivation technologies did not change its crystalline structure; however, it reduced functional group abundance. Therefore, further research on inactivation technologies is required to achieve better pathogen reduction efficiency in struvite to make it a biologically safe fertilizer for crop production.


Subject(s)
Hot Temperature , Poultry , Animals , Humidity , Struvite , Technology
13.
Bioresour Technol ; 333: 125069, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33894445

ABSTRACT

Veterinary antibiotics (VAs) contamination has been considered as a worldwide environmental and health concern in recent decades. This paper reviewed the variability of contents of VAs and their release from the animal breeding industry into the surrounding environment along with the performance of the manure treatment technologies. The data collected revealed that VAs were mostly excreted in animal feces and observed in manure, soil, water, and sediment. The findings illustrate the disparity of VAs in excretion rates, consumption, and their residues in the environment with relatively high distribution for tetracyclines, fluoroquinolones, and sulfonamides. Anaerobic digestion has a capacity to remove of 73% VAs while manure composting and constructed wetlands can remove 84.7%, and 90% VAs. Due to the profound effect of antibiotics on the environment, further research and intensive management strategies for livestock manure need to be designed to improve the removal efficiency and manure management technologies.


Subject(s)
Composting , Manure , Animals , Anti-Bacterial Agents , Livestock , Tetracyclines
14.
Sci Total Environ ; 751: 141789, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32889474

ABSTRACT

The high content of organic substances in strength agro-industrial wastewater has been documented to be among the major barriers hampering nutrient recovery efficiency of struvite precipitation. However, our results in this study show that the previously reported negative impacts of organic substances in high-strength agricultural wastewater on struvite precipitation might be overestimated. This study is the first to test the influence of three forms of organic substances from real high-strength wastewater that contains a complex of particulate, colloidal and soluble organic substances, on nutrient recovery efficiency and product quality through struvite precipitation at varying pH conditions. Our results demonstrated that the inhibition of organic substances on struvite formation only happens at the pH levels of <9.0 with recovery reduction of PO43- (5-15%) and NH4+ (6-13%). The inhibitory effect of the organic substances at the optimal pH range (9.5-10) reported from the literature review is only ≤5%. Moreover, the transformation in the contents of humic- and protein-like substances with an increment in pH was characterized and may contribute to mitigate the inhibition of nutrient recovery. Even though the particulate and colloidal organic substances slowed the precipitation reaction, they substantially increased the particle size (i.e., 70% and 40%, respectively) of the formed struvite. The presence of organic substances in all tested forms does not significantly influence the purity and crystalline structure of struvite which can still be used as a slow-releasing fertilizer. Regarding the relocation process of organic substances during struvite precipitation under varying pH conditions, understanding the interaction between organics and heavy metals which in turn affect the dynamics of heavy metals in solution and precipitates remains limited; thus, additional research is needed.

15.
J Environ Manage ; 253: 109730, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31665689

ABSTRACT

Characterization of the driving forces for effective and economical phosphate (PO43-) removal from wastewater by using magnetically modified biochar was performed in this study. The biochar produced from slow pyrolysis of local agricultural biomass (wood and rice husks) were magnetically modified by co-precipitation of Fe(II) and Fe(III) ions in their presence. The surface characteristics before and after modification and their efficacy for PO43- sorption, and desorption were compared. Results show that, even though magnetic biochar surface modification slightly decreased their surface area, PO43- adsorption to the modified biochars was almost double (25-28 mg g-1) than that to the raw biochar (12-15 mg g-1). The adsorption isotherm of raw biochars was better simulated via the Langmuir model, while that of modified biochars was better fitted to the Freundlich model. Moreover, the integrated analysis by XRD, EDX, and FTIR show that PO43- sorption to modified biochars could be attributed to the simultaneously-occurring electrostatic attraction, surface precipitation, and ligand exchange. While the electrostatic attraction was dominant in the presence of unmodified biochars. The regenerated modified biochars retained substantial PO43- adsorption capacity up to several regeneration cycles. Their high reusability potential leads to the effective and economical phosphate recovery and thus modified biochars could offer a viable strategy for PO43- removal.


Subject(s)
Ferric Compounds , Phosphates , Adsorption , Biomass , Charcoal
16.
J Environ Manage ; 230: 1-13, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30261440

ABSTRACT

To meet the needs of a fast growing global population, agriculture and livestock production have been intensified, resulting in environmental pollution, climate change, and soil health declining. Closing the nutrient circular loop is one of the most important sustainability factors that affect these issues. Apart from being a serious environmental issue, the discharge of N and P via agricultural wastewater is also a major factor that disturbs nutrient cycling in agriculture. In this study, the performance, in terms of recovery, of N and P (individually, as well as simultaneously) from agricultural wastewaters via struvite has been comparatively summarized. Details on the hindrances to nutrient recovery through struvite formation from agricultural effluents, along with strategies to overcome these hindrances, are provided. In addition, various strategies for recovery performance intensification and operational cost reduction are comprehensively discussed. This work will provide scientists and engineers with a better idea on how to solve the bottlenecks of this technique and integrate it successfully into their treatment systems, which will ultimately help close the nutrient loop in agriculture.


Subject(s)
Struvite/chemistry , Wastewater/chemistry , Agriculture , Animals , Farms , Nutrients/chemistry , Soil
17.
Sci Total Environ ; 652: 623-632, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30368191

ABSTRACT

This study investigated the effects of biochar seeding (wheat straw biochar and rice husk biochar) on nutrient recovery via struvite formation, and improvements in the particle size of precipitated struvite from anaerobic digestate supernatant. Simultaneously, the influence of biochar seeding on heavy metal accumulation and elimination of pathogens (total coliforms and Escherichia coli) was evaluated under various operational factors, e.g., pH, supersaturation, reaction time, and seeding rates. Compared to the non-seeding process (maximum recovery efficiency of phosphate and ammonium 91% and 83%, respectively, with a particle size of 70 µm) and the struvite-seeding process (maximum recovery efficiency of phosphate and ammonium 97% and 94%, respectively, with a particle size of 100 µm), the process of biochar seeding improved nutrient recovery up to 7% and 11% for phosphate and ammonium, respectively, and increased struvite particle size by 43%, regardless of biochar type. XRD diffraction and FTIR analysis confirmed the prevalence of orthorhombic characteristics and an inner crystalline structure of the struvite formed by biochar seeding. About 75% of total coliforms and 70% of Escherichia coli were removed from the digestate supernatant through seeded struvite precipitation, regardless of the seeding materials. However, the biochar seeding process led to an accumulation of heavy metals in the acquired struvite product than that with non-seeded precipitation process. The concentrations of these metals were still well below permissible limits for application on agricultural land. It can be concluded that the inclusion of biochar as a seeding material might be a sustainable strategy to enhance struvite formation, intensify nutrient recovery, and yield high-quality struvite fertilizer with increased particle sizes.


Subject(s)
Charcoal/chemistry , Metals, Heavy/chemistry , Models, Chemical , Struvite/chemistry , Chemical Precipitation , Fertilizers , Phosphates
18.
J Colloid Interface Sci ; 528: 145-155, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-29843062

ABSTRACT

Dynamics of phosphate (PO43-) adsorption, desorption and regeneration characteristics of three lab-synthesized iron oxides, ferrihydrite (F), goethite (G), and magnetite (M) were evaluated in this study. Batch experiments were conducted to evaluate the impact of several adsorption parameters including adsorbent dosage, reaction time, temperature, pH, and ionic strength. The results showed that PO43- adsorption increased with reaction time and temperature while it decreased with an increase in solution pH. Adsorption isotherm data exhibited good agreement with the Freundlich and Langmuir model with maximum monolayer adsorption capacities of 66.6 mg·g-1 (F), 57.8 mg·g-1 (M), and 50.5 mg·g-1 (G). A thermodynamics evaluation produced ΔG < 0, ΔH > 0, and ΔS > 0, demonstrating that PO43- adsorption onto tested minerals is endothermic, spontaneous, and disordered. The PO43- removal mostly occurred via electrostatic attraction between the sorbate and sorbent surfaces. Moreover, the PO43- sorption was reversible and could be desorbed at varying rates in both neutral and alkaline environments. The good desorption capacity has practical benefits for potential regeneration and re-use of the saturated particles in wastewater treatment systems.

19.
Sci Total Environ ; 635: 1-9, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29656055

ABSTRACT

The aim of this study was to assess the potential of struvite precipitation to recover nutrients from anaerobically-processed poultry slurry and struvite's interactions with heavy metals (Zn, Cu, Pb, Cr, and Ni) and pathogens (total coliforms and Escherichia coli). The impacts of pH, Mg, N, and P molar proportion, reaction time, and mixing rate and duration were explored to determine the optimal conditions for nutrient recovery through struvite precipitation. A pH range of 9.5 to 10.5, was ideal for P and N removal and recovery, with a molar ratio of 1:1:1 for Mg:N:P. A mixing rate of 150rpm for 10min could allow nutrient recovery with little loss (3.32%) of NH3 through volatilization, and also achieve an optimal struvite crystal size (50-60µm). The results of X-ray diffractometry and scanning electron microscopy confirmed that the precipitates generated at pH9 and 10 were orthorhombic struvite. Moreover, along with the recovery of nutrients, 40, 45, 66, 30, and 20% of Zn, Cu, Pb, Cr, and Ni, respectively, and 70% total coliforms and E. coli were removed by struvite precipitation from poultry slurry. This was observed despite that the levels of contaminants (heavy metals) detected in struvite were well below the permissible limits and free of pathogens. Consequently, it was inferred that the struvite quality was reasonable by virtue of its heavy metal and pathogen content, and therefore appropriate for application in the field. Similarly, struvite precipitation has multiple benefits as it can effectively recover nutrients as well as reducing pathogenic populations.


Subject(s)
Enterobacteriaceae/metabolism , Metals, Heavy/chemistry , Sewage/analysis , Struvite/analysis , Anaerobiosis , Animals , Chemical Precipitation , Chickens , China , Escherichia coli/metabolism , Sewage/chemistry , Struvite/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...