Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Dev Biol ; 9(4)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34698187

ABSTRACT

In this case report, we focus on Muenke syndrome (MS), a disease caused by the p.Pro250Arg variant in fibroblast growth factor receptor 3 (FGFR3) and characterized by uni- or bilateral coronal suture synostosis, macrocephaly without craniosynostosis, dysmorphic craniofacial features, and dental malocclusion. The clinical findings of MS are further complicated by variable expression of phenotypic traits and incomplete penetrance. As such, unraveling the mechanisms behind MS will require a comprehensive and systematic way of phenotyping patients to precisely identify the impact of the mutation variant on craniofacial development. To establish this framework, we quantitatively delineated the craniofacial phenotype of an individual with MS and compared this to his unaffected parents using three-dimensional cephalometric analysis of cone beam computed tomography scans and geometric morphometric analysis, in addition to an extensive clinical evaluation. Secondly, given the utility of human induced pluripotent stem cells (hiPSCs) as a patient-specific investigative tool, we also generated the first hiPSCs derived from a family trio, the proband and his unaffected parents as controls, with detailed characterization of all cell lines. This report provides a starting point for evaluating the mechanistic underpinning of the craniofacial development in MS with the goal of linking specific clinical manifestations to molecular insights gained from hiPSC-based disease modeling.

2.
Stem Cell Res ; 46: 101823, 2020 07.
Article in English | MEDLINE | ID: mdl-32505898

ABSTRACT

Muenke syndrome is the leading genetic cause of craniosynostosis and results in a variety of disabling clinical phenotypes. To model the disease and study the pathogenic mechanisms, a human induced pluripotent stem cell (hiPSC) line was generated from a patient diagnosed with Muenke syndrome. Successful reprogramming was validated by morphological features, karyotyping, loss of reprogramming factors, expression of pluripotency markers, mutation analysis and teratoma formation.


Subject(s)
Craniosynostoses , Induced Pluripotent Stem Cells , Craniosynostoses/genetics , Humans , Mutation , Phenotype , Receptor, Fibroblast Growth Factor, Type 3/genetics
3.
Stem Cells ; 38(9): 1107-1123, 2020 09.
Article in English | MEDLINE | ID: mdl-32442326

ABSTRACT

Human pluripotent stem cells (hPSCs) can provide a platform to model bone organogenesis and disease. To reflect the developmental process of the human skeleton, hPSC differentiation methods should include osteogenic progenitors (OPs) arising from three distinct embryonic lineages: the paraxial mesoderm, lateral plate mesoderm, and neural crest. Although OP differentiation protocols have been developed, the lineage from which they are derived, as well as characterization of their genetic and molecular differences, has not been well reported. Therefore, to generate lineage-specific OPs from human embryonic stem cells and human induced pluripotent stem cells, we employed stepwise differentiation of paraxial mesoderm-like cells, lateral plate mesoderm-like cells, and neural crest-like cells toward their respective OP subpopulation. Successful differentiation, confirmed through gene expression and in vivo assays, permitted the identification of transcriptomic signatures of all three cell populations. We also report, for the first time, high FGF1 levels in neural crest-derived OPs-a notable finding given the critical role of fibroblast growth factors (FGFs) in osteogenesis and mineral homeostasis. Our results indicate that FGF1 influences RUNX2 levels, with concomitant changes in ERK1/2 signaling. Overall, our study further validates hPSCs' power to model bone development and disease and reveals new, potentially important pathways influencing these processes.


Subject(s)
Cell Differentiation , Cell Lineage , Core Binding Factor Alpha 1 Subunit/metabolism , Fibroblast Growth Factor 1/metabolism , Neural Crest/cytology , Osteogenesis , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Animals , Humans , MAP Kinase Signaling System , Male , Mice , Principal Component Analysis , Transcriptome/genetics
4.
Invest Ophthalmol Vis Sci ; 57(7): 3039-46, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27281269

ABSTRACT

PURPOSE: The roles of gap junction protein connexin 50 (Cx50) encoded by Gja8, during lens development are not fully understood. Connexin 50 knockout (KO) lenses have decreased proliferation of epithelial cells and altered fiber cell denucleation. We further investigated the mechanism for cellular defects in Cx50 KO (Gja8-/-) lenses. METHODS: Fiber cell morphology and subcellular distribution of various lens membrane/cytoskeleton proteins from wild-type and Cx50 KO mice were visualized by immunofluorescent staining and confocal microscopy. RESULTS: We observed multiple morphological defects in the cortical fibers of Cx50 KO lenses, including abnormal fiber cell packing geometry, decreased F-actin enrichment at tricellular vertices, and disrupted ball-and-socket (BS) structures on the long sides of hexagonal fibers. Moreover, only small gap junction plaques consisting of Cx46 (α3 connexin) were detected in cortical fibers and the distributions of the BS-associated beta-dystroglycan and ZO-1 proteins were altered. CONCLUSIONS: Connexin 50 gap junctions are important for BS structure maturation and cortical fiber cell organization. Connexin 50-based gap junction plaques likely form structural domains with an array of membrane/cytoskeletal proteins to stabilize BS. Loss of Cx50-mediated coupling, BS disruption, and altered F-actin in Cx50 KO fibers, thereby contribute to the small lens and mild cataract phenotypes.


Subject(s)
Cell Surface Extensions/ultrastructure , Connexins/physiology , Intermediate Filament Proteins/ultrastructure , Lens, Crystalline/metabolism , Lens, Crystalline/ultrastructure , Actins/metabolism , Animals , Connexins/metabolism , Cytoskeleton/metabolism , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...