Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pathology ; 56(4): 504-515, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38413251

ABSTRACT

SMARCA4 mutation has emerged as a marker of poor prognosis in lung cancer and has potential predictive value in cancer treatment, but recommendations for which patients require its investigation are lacking. We comprehensively studied SMARCA4 alterations and the clinicopathological significance in a large cohort of immunohistochemically-subtyped non-small cell lung cancer (NSCLC). A total of 1416 patients was studied for the presence of SMARCA4 deficiency by immunohistochemistry (IHC). Thereafter, comprehensive sequencing of tumours was performed for 397 of these patients to study the mutational spectrum of SWI/SNF and SMARCA4 aberrations. IHC evidence of SMARCA4 deficiency was found in 2.9% of NSCLC. Of the sequenced tumours, 38.3% showed aberration in SWI/SNF complex, and 9.3% had SMARCA4 mutations. Strikingly, SMARCA4 aberrations were much more prevalent in large cell carcinoma (LCC) than other histological tumour subtypes. SMARCA4-deficient and SMARCA4-mutated tumours accounted for 40.5% and 51.4% of all LCC, respectively. Multivariable analyses confirmed SMARCA4 mutation was an independent prognostic factor in lung cancer. The immunophenotype of a subset of these tumours frequently showed TTF1 negativity and HepPAR1 positivity. SMARCA4 mutation or its deficiency was associated with positive smoking history and poor prognosis. It also demonstrated mutual exclusion with EGFR mutation. Taken together, the high incidence of SMARCA4 aberrations in LCC may indicate its diagnostic and prognostic value. Our study established the necessity of SMARCA4 IHC in the identification of SMARCA4-aberrant tumours, and this may be of particular importance in LCC and tumours without known driver events.


Subject(s)
Carcinoma, Large Cell , Carcinoma, Non-Small-Cell Lung , DNA Helicases , Nuclear Proteins , Transcription Factors , Female , Humans , Male , Biomarkers, Tumor/genetics , Carcinoma, Large Cell/genetics , Carcinoma, Large Cell/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , DNA Helicases/genetics , DNA Helicases/deficiency , Immunohistochemistry , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/deficiency , Prognosis , Transcription Factors/genetics , Transcription Factors/deficiency
2.
Int J Mol Sci ; 17(12)2016 Dec 06.
Article in English | MEDLINE | ID: mdl-27929436

ABSTRACT

Small RNAs, including microRNAs (miRNAs) and phased small interfering RNAs (phasiRNAs; from PHAS loci), play key roles in plant development. Cultivated soybean, Glycine max, contributes a great deal to food production, but, compared to its wild kin, Glycine soja, it may lose some genetic information during domestication. In this work, we analyzed the sRNA profiles of different tissues in both cultivated (C08) and wild soybeans (W05) at three stages of development. A total of 443 known miRNAs and 15 novel miRNAs showed varying abundances between different samples, but the miRNA profiles were generally similar in both accessions. Based on a sliding window analysis workflow that we developed, 50 PHAS loci generating 55 21-nucleotide phasiRNAs were identified in C08, and 46 phasiRNAs from 41 PHAS loci were identified in W05. In germinated seedlings, phasiRNAs were more abundant in C08 than in W05. Disease resistant TIR-NB-LRR genes constitute a very large family of PHAS loci. PhasiRNAs were also generated from several loci that encode for NAC transcription factors, Dicer-like 2 (DCL2), Pentatricopeptide Repeat (PPR), and Auxin Signaling F-box 3 (AFB3) proteins. To investigate the possible involvement of miRNAs in initiating the PHAS-phasiRNA pathway, miRNA target predictions were performed and 17 C08 miRNAs and 15 W05 miRNAs were predicted to trigger phasiRNAs biogenesis. In summary, we provide a comprehensive description of the sRNA profiles of wild versus cultivated soybeans, and discuss the possible roles of sRNAs during soybean germination.


Subject(s)
Fabaceae/genetics , Glycine max/genetics , RNA, Plant/genetics , Gene Expression Regulation, Plant/genetics , MicroRNAs/genetics , RNA, Small Interfering
3.
Int J Mol Sci ; 16(10): 24532-54, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26501263

ABSTRACT

To survive under abiotic stresses in the environment, plants trigger a reprogramming of gene expression, by transcriptional regulation or translational regulation, to turn on protective mechanisms. The current focus of research on how plants cope with abiotic stresses has transitioned from transcriptomic analyses to small RNA investigations. In this review, we have summarized and evaluated the current methodologies used in the identification and validation of small RNAs and their targets, in the context of plant responses to abiotic stresses.


Subject(s)
MicroRNAs/genetics , RNA, Plant/genetics , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Sodium Chloride/pharmacology , Stress, Physiological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...