Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 554: 134-148, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30389474

ABSTRACT

Tocopherol-based lipids are widely used for nucleic acid delivery. Using tocopherol molecules, we designed and synthesized 5-HT functionalized lipids by tethering 5-hydroxytryptamine (5-HT), a small molecule ligand as the head group to a natural amphiphilic molecule namely α-tocopherol (Vitamin E). This is with the aim of delivering nucleic acids specifically into cells expressing the serotonin receptors (5-hydroxytryptamine[5-HT]) which are abundant in the central nervous system. In order to achieve target recognition, we adopted an approach wherein two structurally different lipid molecules having serotonin as the head group was conjugated to tocopherol via different linkers thus generating lipids with either free -NH2 or -OH moiety. The corresponding lipids designated as Lipid A (Tocopheryl carbonate serotonin-NH2) and Lipid B (Tocopheryl 2-hydroxy propyl ammonium serotonin-OH), were formulated with co-lipids 1,2-dioleoyl-sn-glycero-3-phosphatidyl-ethanolamine (DOPE) and 1,2-dioleoyl-sn-glycero-sn-3-phosphatidylcholine (DOPC) and evaluated for their ability to deliver plasmid DNA through reporter gene expression assays in vitro. Furthermore, the physicochemical characteristics and cellular interactions of the formulations were examined using serotonin-receptor enriched cells in order to distinguish the structural and functional attributes of both lipids. Cell-based gene expression studies reveal that in comparison to Lipid A, a formulation of Lipid B prepared with DOPE as the co-lipid, contributes to efficient uptake leading to significant enhancement in transfection. Specific interactions explored by molecular docking studies suggests the role of the hydroxyl moiety and the enantiospecific significance of serotonin- conjugated tocopherol lipids in recognizing these receptors thus signifying a promising lipid-based approach to target the serotonin receptors in the central nervous system.


Subject(s)
DNA/administration & dosage , Lipids/chemistry , Serotonin/administration & dosage , Tocopherols/administration & dosage , Animals , Cell Line , Gene Expression Regulation , Gene Transfer Techniques , Genes, Reporter/genetics , Humans , Liposomes , Molecular Docking Simulation , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Plasmids/administration & dosage , Receptors, Serotonin/metabolism , Serotonin/chemistry , Structure-Activity Relationship , Tocopherols/chemistry , Transfection
2.
Medchemcomm ; 8(5): 989-999, 2017 May 01.
Article in English | MEDLINE | ID: mdl-30108814

ABSTRACT

Herein, we report the synthesis, characterization and evaluation of the transfection efficiencies of a series of dicationic amphiphiles designed to construct quaternary ammonium ion-based cationic lipids varying in chain length of the hydrophobic back bone connected individually through head group to a 1,2,3-triazolium cation consisting of 2-hydroxy ethyl chain as substitution. Accordingly, three dicationic amphiphiles were synthesized by "click chemistry" approach and formulated to bilayered vesicles using DOPE as a co-lipid. The transfection efficacies of these novel lipid formulations were measured and correlated with the results obtained from various physicochemical techniques. Importantly, the observed gradient in the activity profile, where the transfection potential increased with decreasing chain length of the lipid hydrophobic back bone, highlights the synergistic interplay of the lipid alkyl chain length in coordination with charge delocalization in modulating the transfection potency of these 1,2,3-triazolium-based lipids.

3.
Org Biomol Chem ; 14(28): 6857-70, 2016 Jul 12.
Article in English | MEDLINE | ID: mdl-27348545

ABSTRACT

Gene therapy, a promising strategy for the delivery of therapeutic nucleic acids, is greatly dependent on the development of efficient vectors. In this study, we designed and synthesized several tocopherol-based lipids varying in the head group region. Here, we present the structure-activity relationship of stable aqueous suspensions of lipids that were synthetically prepared and formulated with 1,2-dioleoyl phosphatidyl ethanolamine (DOPE) as the co-lipid. The physicochemical properties such as the hydrodynamic size, zeta potential, stability and morphology of these formulations were investigated. Interaction with plasmid DNA was clearly demonstrated through gel binding and EtBr displacement assays. Further, the transfection potential was examined in mouse neuroblastoma Neuro-2a, hepatocarcinoma HepG2, human embryonic kidney and Chinese hamster ovarian cell lines, all of different origins. Cell-uptake assays with N-methylpiperidinium, N-methylmorpholinium, N-methylimidazolium and N,N-dimethylaminopyridinium head group containing formulations evidently depicted efficient cell uptake as observed by particulate cytoplasmic fluorescence. Trafficking of lipoplexes using an endocytic marker and rhodamine-labeled phospholipid DHPE indicated that the lipoplexes were not sequestered in the lysosomes. Importantly, lipoplexes were non-toxic and mediated good transfection efficiency as analyzed by ß-Gal and GFP reporter gene expression assays which established the superior activity of lipids whose structures correlate strongly with the transfection efficiency.


Subject(s)
DNA/administration & dosage , Lipids/chemistry , Plasmids/administration & dosage , Tocopherols/chemistry , Transfection/methods , Animals , Cell Line , Cell Line, Tumor , Cricetulus , DNA/genetics , Gene Transfer Techniques , Green Fluorescent Proteins/genetics , Hep G2 Cells , Humans , Mice , Phosphatidylethanolamines/chemistry , Plasmids/genetics , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...