Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Genomics Inform ; 21(2): e16, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37415451

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a viral infection produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus epidemic, which was declared a global pandemic in March 2020. The World Health Organization has recorded around 43.3 billion cases and 59.4 million casualties to date, posing a severe threat to global health. Severe COVID-19 indicates viral pneumonia caused by the SARS-CoV-2 infections, which can induce fatal consequences, including acute respiratory distress syndrome (ARDS). The purpose of this research is to better understand the COVID-19 and ARDS pathways, as well as to find targeted single nucleotide polymorphism. To accomplish this, we retrieved over 100 patients' samples from the Sequence Read Archive, National Center for Biotechnology Information. These sequences were processed through the Galaxy server next generation sequencing pipeline for variant analysis and then visualized in the Integrative Genomics Viewer, and performed statistical analysis using t-tests and Bonferroni correction, where six major genes were identified as DNAH7, CLUAP1, PPA2, PAPSS1, TLR4, and IFITM3. Furthermore, a complete understanding of the genomes of COVID-19-related ARDS will aid in the early identification and treatment of target proteins. Finally, the discovery of novel therapeutics based on discovered proteins can assist to slow the progression of ARDS and lower fatality rates.

2.
Int J Pept Res Ther ; 28(5): 132, 2022.
Article in English | MEDLINE | ID: mdl-35891800

ABSTRACT

Tuberculosis (TB) is one of the leading cause of death worldwide, and the world is fighting with this global health emergency from the past 25 year. The current clinical interventions for the management of TB face a number of inherent challenges which includes low patient compliance due to the long therapy regimen, and emerging antimicrobial resistance. Therefore, there is an unmet need of new anti-TB therapeutic agent with enhanced safety profile, which can reduce the duration of therapy, enhanced bioavailability and efficacy against drug resistant forms of TB. Bacteriocins or anti microbial peptides (AMPs) occurring in microbes, human beings and other life forms have been investigated as host defense peptides. Structurally AMPs are short and ionized and play crucial role in innate immunity of host. Some AMPs can kill microbial infections directly while others function indirectly by altering the host defense mechanisms. Amidst rising issue of antibiotic resistance, AMPs are being tested in clinical research as potential antibiotics and novel therapeutics to fight against infections and non-infectious diseases. Studies have also highlighted the ability of AMPs to act against the bacteria spreading tuberculosis. The present review provides information on antimicrobial peptides, highlights their biological role, classification and mode of action in treatment and prevention of tuberculosis. It further mentions the prospects and challenges of developing peptides for their therapeutic applications against mycobacterium tuberculosis.

3.
Article in English | MEDLINE | ID: mdl-31281799

ABSTRACT

Nosocomial infections have become alarming with the increase of multidrug-resistant bacterial strains of Acinetobacter baumannii. Being the causative agent in ~80% of the cases, these pathogenic gram-negative species could be deadly for hospitalized patients, especially in intensive care units utilizing ventilators, urinary catheters, and nasogastric tubes. Primarily infecting an immuno-compromised system, they are resistant to most antibiotics and are the root cause of various types of opportunistic infections including but not limited to septicemia, endocarditis, meningitis, pneumonia, skin, and wound sepsis and even urinary tract infections. Conventional experimental methods including typing, computational methods encompassing comparative genomics, and combined methods of reverse vaccinology and proteomics had been proposed to differentiate and develop vaccines and/or drugs for several outbreak strains. However, identifying proteins suitable enough to be posed as drug targets and/or molecular vaccines against the multidrug-resistant pathogenic bacterial strains has probably remained an open issue to address. In these cases of novel protein identification, the targets either are uncharacterized or have been unable to confer the most coveted protection either in the form of molecular vaccine candidates or as drug targets. Here, we report a strategic approach with the 3,766 proteins from the whole genome of A. baumannii ATCC19606 (AB) to rationally identify plausible candidates and propose them as future molecular vaccine candidates and/or drug targets. Essentially, we started with mapping the vaccine candidates (VaC) and virulence factors (ViF) of A. baumannii strain AYE onto strain ATCC19606 to identify them in the latter. We move on to build small networks of VaC and ViF to conceptualize their position in the network space of the whole genomic protein interactome (GPIN) and rationalize their candidature for drugs and/or molecular vaccines. To this end, we propose new sets of known proteins unearthed from interactome built using key factors, KeF, potent enough to compete with VaC and ViF. Our method is the first of its kind to propose, albeit theoretically, a rational approach to identify crucial proteins and pose them for candidates of vaccines and/or drugs effective enough to combat the deadly pathogenic threats of A. baumannii.


Subject(s)
Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Bacterial Vaccines/therapeutic use , Drug Resistance, Multiple, Bacterial/drug effects , Vaccines, Synthetic/pharmacology , Acinetobacter Infections/drug therapy , Acinetobacter Infections/immunology , Acinetobacter Infections/microbiology , Acinetobacter Infections/prevention & control , Acinetobacter baumannii/genetics , Bacterial Proteins/genetics , Computational Biology , Cross Infection , Genome, Bacterial , Genomics , Humans , Protein Interaction Maps/drug effects , Protein Interaction Maps/genetics , Proteomics , Virulence Factors/genetics
4.
Sci Rep ; 9(1): 5427, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30931960

ABSTRACT

Enterovirus A71 (EV-A71) is an emerging pathogen in the Enterovirus A species group. EV-A71 causes hand, foot and mouth disease (HFMD), with virulent variants exhibiting polio-like acute flaccid paralysis and other central nervous system manifestations. We analysed all enterovirus A71 complete genomes with collection dates from 2008 to mid-2018. All sub-genotypes exhibit a strong molecular clock with omega (dN/dS) suggesting strong purifying selection. In sub-genotypes B5 and C4, positive selection can be detected at two surface sites on the VP1 protein, also detected in positive selection studies performed prior to 2008. Toggling of a limited repertoire of amino acids at these positively selected residues over the last decade suggests that EV-A71 may be undergoing a sustained frequency-dependent selection process for immune evasion, raising issues for vaccine development. These same sites have also been previously implicated in virus-host binding and strain-associated severity of HFMD, suggesting that immune evasion may be an indirect driver for virulence (154 words).


Subject(s)
Capsid Proteins/metabolism , Enterovirus A, Human/immunology , Immune Evasion , Virulence , Amino Acid Sequence , Antigens, Viral/immunology , Binding Sites , Capsid Proteins/chemistry , Enterovirus A, Human/classification , Enterovirus A, Human/pathogenicity , Hand, Foot and Mouth Disease/virology , Phylogeny
5.
Article in English | MEDLINE | ID: mdl-30488026

ABSTRACT

Over recent years, typhoid fever has gained increasing attention with several cases reporting treatment failure due to multidrug resistant (MDR) strains of Salmonella enterica serovar Typhi. While new drug development strategies are being devised to combat the threat posed by these MDR pathogens, drug repurposing or repositioning has become a good alternative. The latter is considered mainly due to its capacity for saving sufficient time and effort for pre-clinical and optimization studies. Owing to the possibility of an unsuccessful repositioning, due to the mismatch in the optimization of the drug ligand for the changed biochemical properties of "old" and "new" targets, we have chosen a "targeted" approach of adopting a combined chemical moiety-based drug repurposing. Using small molecules selected from a combination of earlier approved drugs having phenalenone and furanone moieties, we have computationally delineated a step-wise approach to drug design against MDR Salmonella. We utilized our network analysis-based pre-identified, essential chaperone protein, SicA, which regulates the folding and quality of several secretory proteins including the Hsp70 chaperone, SigE. To this end, another crucial chaperone protein, Hsp70 DnaK, was also considered due to its importance for pathogen survival under the stress conditions typically encountered during antibiotic therapies. These were docked with the 19 marketed anti-typhoid drugs along with two phenalenone-furanone derivatives, 15 non-related drugs which showed 70% similarity to phenalenone and furanone derivatives and other analogous small molecules. Furthermore, molecular dynamics simulation studies were performed to check the stability of the protein-drug complexes. Our results showed the best binding interaction and stability, under the parameters of a virtual human body environment, with XR770, a phenaleno-furanone moiety based derivative. We therefore propose XR770, for repurposing for therapeutic intervention against emerging and significant drug resistance conferred by pathogenic Salmonella strains.


Subject(s)
Drug Resistance, Multiple, Bacterial/drug effects , Furans/pharmacology , Phenalenes/pharmacology , Salmonella typhi/drug effects , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/drug effects , Drug Combinations , HSP72 Heat-Shock Proteins/drug effects , Molecular Chaperones/drug effects , Molecular Docking Simulation , Protein Folding/drug effects , Protein Interaction Domains and Motifs , Sigma Factor/drug effects
6.
Article in English | MEDLINE | ID: mdl-30131943

ABSTRACT

Catheter-associated urinary tract infections (CAUTI) is an alarming hospital based disease with the increase of multidrug resistance (MDR) strains of Proteus mirabilis. Cases of long term hospitalized patients with multiple episodes of antibiotic treatments along with urinary tract obstruction and/or undergoing catheterization have been reported to be associated with CAUTI. The cases are complicated due to the opportunist approach of the pathogen having robust swimming and swarming capability. The latter giving rise to biofilms and probably inducible through autoinducers make the scenario quite complex. High prevalence of long-term hospital based CAUTI for patients along with moderate percentage of morbidity, cropping from ignorance about drug usage and failure to cure due to MDR, necessitates an immediate intervention strategy effective enough to combat the deadly disease. Several reports and reviews focus on revealing the important genes and proteins, essential to tackle CAUTI caused by P. mirabilis. Despite longitudinal countrywide studies and methodical strategies to circumvent the issues, effective means of unearthing the most indispensable proteins to target for therapeutic uses have been meager. Here, we report a strategic approach for identifying the most indispensable proteins from the genome of P. mirabilis strain HI4320, besides comparing the interactomes comprising the autoinducer-2 (AI-2) biosynthetic pathway along with other proteins involved in biofilm formation and responsible for virulence. Essentially, we have adopted a theoretical network model based approach to construct a set of small protein interaction networks (SPINs) along with the whole genome (GPIN) to computationally identify the crucial proteins involved in the phenomenon of quorum sensing (QS) and biofilm formation and thus, could be therapeutically targeted to fight out the MDR threats to antibiotics of P. mirabilis. Our approach utilizes the functional modularity coupled with k-core analysis and centrality scores of eigenvector as a measure to address the pressing issues.


Subject(s)
Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial , Protein Interaction Maps , Proteus mirabilis/physiology , Quorum Sensing , Biofilms/growth & development , Catheter-Related Infections/microbiology , Humans , Proteus Infections/microbiology , Proteus mirabilis/drug effects , Urinary Tract Infections/microbiology , Virulence Factors/metabolism
7.
Sci Rep ; 8(1): 6669, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29703908

ABSTRACT

Identifying effective drug targets, with little or no side effects, remains an ever challenging task. A potential pitfall of failing to uncover the correct drug targets, due to side effect of pleiotropic genes, might lead the potential drugs to be illicit and withdrawn. Simplifying disease complexity, for the investigation of the mechanistic aspects and identification of effective drug targets, have been done through several approaches of protein interactome analysis. Of these, centrality measures have always gained importance in identifying candidate drug targets. Here, we put forward an integrated method of analysing a complex network of cancer and depict the importance of k-core, functional connectivity and centrality (KFC) for identifying effective drug targets. Essentially, we have extracted the proteins involved in the pathways leading to cancer from the pathway databases which enlist real experimental datasets. The interactions between these proteins were mapped to build an interactome. Integrative analyses of the interactome enabled us to unearth plausible reasons for drugs being rendered withdrawn, thereby giving future scope to pharmaceutical industries to potentially avoid them (e.g. ESR1, HDAC2, F2, PLG, PPARA, RXRA, etc). Based upon our KFC criteria, we have shortlisted ten proteins (GRB2, FYN, PIK3R1, CBL, JAK2, LCK, LYN, SYK, JAK1 and SOCS3) as effective candidates for drug development.


Subject(s)
Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Drug Discovery/methods , Drug-Related Side Effects and Adverse Reactions , Neoplasms/drug therapy , Antineoplastic Agents/adverse effects , Gene Regulatory Networks/drug effects , Humans , Neoplasms/pathology , Protein Interaction Maps/drug effects
8.
J Adv Pharm Technol Res ; 6(3): 125-9, 2015.
Article in English | MEDLINE | ID: mdl-26317077

ABSTRACT

Lung cancer being the most common disease worldwide that leads to a number of deaths. A huge amount of effort has been done in screening trials for early diagnose treatment which increases the disease-free survival rate. Based on the expression of protein of mouse double minute 2 and tumor protein 53 complex, we have identified the antagonist for this complex that would facilitate the treatment for specific lung cancer. It is a complex disease that involves vast investigation for the characterization of a lung cancer and thus, computational study is being developed to mimic the in vivo system. In this work, a computational process was employed for the identification of these proteins, with a short and simple method to discover protein-protein interactions. Moreover, these proteins have more similarities in their function with the known cancer proteins as compared to those identified from the protein expression specific profiles. A new method that utilizes experimental information to improve the extent of numerical calculations based on free energy profiles from molecular dynamics simulation. The experimental information guides the simulation along relevant pathways and decreases overall computational time. This method introduces umbrella sampling simulations. A new technique umbrella sampling is described where the high efficacy100 of this technique enables uniform sampling with several degrees of freedom. Here, we review the protein interactions techniques and we focus on main concepts in the molecular of in-silico study in lung cancer. This study recruiting new methods proved the efficiency and showed good results.

SELECTION OF CITATIONS
SEARCH DETAIL
...