Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-25768530

ABSTRACT

We show that underdamped molecular vibrations fuel the efficient excitation energy transfer in the Fenna-Matthews-Olson molecular aggregate under realistic physiological conditions. By employing an environmental fluctuation spectral function derived from experiments, we obtain numerically exact results for the exciton quantum dynamics in the presence of underdamped vibrationally coherent quantum states. Assuming the prominent 180-cm(-1) vibrational mode to be underdamped, additional coherent transport channels for the excitation energy transfer open up and we observe an increase of the transfer speed towards the reaction center by up to 24%.


Subject(s)
Bacterial Proteins/chemistry , Energy Transfer/physiology , Light-Harvesting Protein Complexes/chemistry , Models, Molecular , Chlorobium , Computer Simulation , Quantum Theory , Temperature , Time Factors , Vibration
2.
Phys Rev Lett ; 111(1): 016802, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23863020

ABSTRACT

We propose a design for molecular charge qubits based on π-conjugated block copolymers and determine their electronic structure as well as their vibrational active modes. By tuning the length of the oligomers, the tunnel coupling in the charge qubit and its decoherence properties due to molecular vibrations can be chemically engineered. Coherent oscillations result with quality factors of up to 10(4) at room temperature. In turn, the molecular vibrational spectrum induces strong non-Markovian electronic effects which support the survival of quantum coherence.

3.
Article in English | MEDLINE | ID: mdl-24483498

ABSTRACT

The excitation energy transfer dynamics in the Fenna-Matthews-Olson complex is quantified in terms of a non-Markovianity measure based on the time evolution of the trace distance of two quantum states. We use a system description derived from experiments and different environmental fluctuation spectral functions, which are obtained either from experimental data or from molecular dynamics simulations. These exhibit, in all cases, a nontrivial structure with several peaks attributed to vibrational modes of the pigment-protein complex. Such a structured environmental spectrum can, in principle, give rise to strong non-Markovian effects. We present numerically exact real-time path-integral calculations for the transfer dynamics and find, in all cases, a monotonic decrease of the trace distance with increasing time which renders a Markovian description valid.


Subject(s)
Light-Harvesting Protein Complexes/metabolism , Models, Biological , Photosynthesis , Bacteriochlorophyll A/metabolism , Energy Transfer , Markov Chains , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...