Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 12(11)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36359592

ABSTRACT

To avoid dire situations, the medical sector must develop various methods for quickly and accurately identifying infections in remote regions. The primary goal of the proposed work is to create a wearable device that uses the Internet of Things (IoT) to carry out several monitoring tasks. To decrease the amount of communication loss as well as the amount of time required to wait before detection and improve detection quality, the designed wearable device is also operated with a multi-objective framework. Additionally, a design method for wearable IoT devices is established, utilizing distinct mathematical approaches to solve these objectives. As a result, the monitored parametric values are saved in a different IoT application platform. Since the proposed study focuses on a multi-objective framework, state design and deep learning (DL) optimization techniques are combined, reducing the complexity of detection in wearable technology. Wearable devices with IoT processes have even been included in current methods. However, a solution cannot be duplicated using mathematical approaches and optimization strategies. Therefore, developed wearable gadgets can be applied to real-time medical applications for fast remote monitoring of an individual. Additionally, the proposed technique is tested in real-time, and an IoT simulation tool is utilized to track the compared experimental results under five different situations. In all of the case studies that were examined, the planned method performs better than the current state-of-the-art methods.

2.
Entropy (Basel) ; 24(11)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36359697

ABSTRACT

The exponential growth of the edge-based Internet-of-Things (IoT) services and its ecosystems has recently led to a new type of communication network, the Low Power Wide Area Network (LPWAN). This standard enables low-power, long-range, and low-data-rate communications. Long Range Wide Area Network (LoRaWAN) is a recent standard of LPWAN that incorporates LoRa wireless into a networked infrastructure. Consequently, the consumption of smart End Devices (EDs) is a major challenge due to the highly dense network environment characterised by limited battery life, spectrum coverage, and data collisions. Intelligent and efficient service provisioning is an urgent need of a network to streamline the networks and solve these problems. This paper proposes a Dynamic Reinforcement Learning Resource Allocation (DRLRA) approach to allocate efficient resources such as channel, Spreading Factor (SF), and Transmit Power (Tp) to EDs that ultimately improve the performance in terms of consumption and reliability. The proposed model is extensively simulated and evaluated with the currently implemented algorithms such as Adaptive Data Rate (ADR) and Adaptive Priority-aware Resource Allocation (APRA) using standard and advanced evaluation metrics. The proposed work is properly cross validated to show completely unbiased results.

3.
Biomed Res Int ; 2022: 3372296, 2022.
Article in English | MEDLINE | ID: mdl-36187499

ABSTRACT

Healthcare occupies a central role in sustainable societies and has an undeniable impact on the well-being of individuals. However, over the years, various diseases have adversely affected the growth and sustainability of these societies. Among them, heart disease is escalating rapidly in both economically settled and undeveloped nations and leads to fatalities around the globe. To reduce the death ratio caused by this disease, there is a need for a framework to continuously monitor a patient's heart status, essentially doing early detection and prediction of heart disease. This paper proposes a scalable Machine Learning (ML) and Internet of Things-(IoT-) based three-layer architecture to store and process a large amount of clinical data continuously, which is needed for the early detection and monitoring of heart disease. Layer 1 of the proposed framework is used to collect data from IoT wearable/implanted smart sensor nodes, which includes various physiological measures that have significant impact on the deterioration of heart status. Layer 2 stores and processes the patient data on a local web server using various ML classification algorithms. Finally, Layer 3 is used to store the critical data of patients on the cloud. The doctor and other caregivers can access the patient health conditions via an android application, provide services to the patient, and inhibit him/her from further damage. Various performance evaluation measures such as accuracy, sensitivity, specificity, F1-measure, MCC-score, and ROC curve are used to check the efficiency of our proposed IoT-based heart disease prediction framework. It is anticipated that this system will assist the healthcare sector and the doctors in diagnosing heart patients in the initial phases.


Subject(s)
Heart Diseases , Internet of Things , Delivery of Health Care , Heart Diseases/diagnosis , Humans , Machine Learning , Monitoring, Physiologic
SELECTION OF CITATIONS
SEARCH DETAIL
...