Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Reproduction ; 141(3): 343-55, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21183657

ABSTRACT

Bioactivation of precursor proteins by members of the proprotein convertase (PC) family is essential for normal reproduction. The Pcsk6 gene is a member of the PC family that is expressed in numerous ovarian cell types including granulosa cells and oocytes. We hypothesized that loss of PCSK6 would produce adverse effects in the mouse ovary. Mice incapable of expressing PCSK6 (Pcsk6(tm1Rob)) were obtained, and reproductive parameters (serum hormones, whelping interval, estrus cyclicity, and fertility) were compared to Pcsk6(+/+) mice. While Pcsk6(tm1Rob) female mice are fertile, they manifest reduced reproductive capacity at an accelerated rate relative to Pcsk6(+/+) mice. Reproductive senescence is typically reached by 9 months of age and is correlated with loss of estrus cyclicity, elevated serum FSH levels, and gross alterations in ovarian morphology. A wide range of ovarian morphologies were identified encompassing mild, such as an apparent reduction in follicle number, to moderate--ovarian atrophy with a complete absence of follicles--to severe, manifesting as normal ovarian structures replaced by benign ovarian tumors, including tubulostromal adenomas. Targeted gene expression profiling highlighted changes in RNA expression of molecules involved in processes such as steroidogenesis, gonadotropin signaling, transcriptional regulation, autocrine/paracrine signaling, cholesterol handling, and proprotein bioactivation. These results show that PCSK6 activity plays a role in maintaining normal cellular and tissue homeostasis in the ovary.


Subject(s)
Ovarian Diseases/genetics , Ovary/physiology , Proprotein Convertases/genetics , Animals , Estrous Cycle/blood , Estrous Cycle/genetics , Female , Follicle Stimulating Hormone/blood , Gene Expression , Male , Mice , Mice, Transgenic , Mutant Proteins/genetics , Mutant Proteins/physiology , Ovarian Diseases/pathology , Ovarian Diseases/physiopathology , Ovary/abnormalities , Ovary/metabolism , Ovary/pathology , Ovulation/genetics , Ovulation/physiology , Proprotein Convertases/physiology , Reproduction/genetics , Reproduction/physiology , Time Factors
2.
J Ovarian Res ; 3: 5, 2010 Feb 26.
Article in English | MEDLINE | ID: mdl-20187934

ABSTRACT

BACKGROUND: Activation of bone morphogenetic protein (BMP)4 signalling in human ovarian cancer cells induces a number of phenotypic changes in vitro, including altered cell morphology, adhesion, motility and invasion, relative to normal human ovarian surface epithelial cells. From these in vitro analyses, we had hypothesized that active BMP signalling promotes the metastatic potential of ovarian cancer. METHODS: To test this directly, we engineered OVCA429 human ovarian cancer cells possessing doxycycline-inducible expression of a constitutively-active mutant BMP receptor, ALK3QD, and administered these cells to immunocompromised mice. Further characterization was performed in vitro to address the role of activated BMP signalling on the EOC phenotype, with particular emphasis on epithelial-mesenchymal transition (EMT) and cell adhesion. RESULTS: Unexpectedly, doxycycline-induced ALK3QD expression in OVCA429 cells reduced tumour implantation on peritoneal surfaces and ascites formation when xenografted into immunocompromised mice by intraperitoneal injection. To determine the potential mechanisms controlling this in vivo observation, we followed with several cell culture experiments. Doxycycline-induced ALK3QD expression enhanced the refractile, spindle-shaped morphology of cultured OVCA429 cells eliciting an EMT-like response. Using in vitro wound healing assays, we observed that ALK3QD-expressing cells migrated with long, cytoplasmic projections extending into the wound space. The phenotypic alterations of ALK3QD-expressing cells correlated with changes in specific gene expression patterns of EMT, including increased Snail and Slug and reduced E-cadherin mRNA expression. In addition, ALK3QD signalling reduced beta1- and beta3-integrin expression, critical molecules involved in ovarian cancer cell adhesion. The combination of reduced E-cadherin and beta-integrin expression correlates directly with the reduced EOC cell cohesion in spheroids and reduced cell adhesion to the extracellular matrix substrates fibronectin and vitronectin that was observed. CONCLUSIONS: We propose that the key steps of ovarian cancer metastasis, specifically cell cohesion of multicellular aggregates in ascites and cell adhesion for reattachment to secondary sites, may be inhibited by overactive BMP signalling, thereby decreasing the ultimate malignant potential of ovarian cancer in this model system.

3.
Carcinogenesis ; 28(6): 1153-62, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17272306

ABSTRACT

We identified previously an autocrine bone morphogenetic protein-4 (BMP4) signalling pathway in primary human normal ovarian surface epithelial (OSE) and epithelial ovarian cancer (OvCa) cells. Herein we show that treatment of OvCa cells with BMP4 produced morphological alterations and increased cellular adhesion, motility and invasion. The BMP4 inhibitor noggin blocked the BMP4-induced phenotype, and decreased autocrine BMP4-mediated OvCa cell motility and adherence. In response to exogenous BMP4, the epithelial-mesenchymal transition (EMT) markers Snail and Slug mRNA and protein were up-regulated, E-cadherin mRNA and protein were down-regulated and the network of alpha smooth muscle actin changed to resemble a mesenchymal cell. We also observed changes in the level of activated Rho GTPases in OvCa cells treated with BMP4, strongly suggesting that the changes in morphology, adhesion, motility and invasion are probably mediated through the activation of these molecules. Strikingly, treatment of normal OSE cells with BMP4 or noggin failed to alter cell motility, providing evidence that OSE and OvCa cells possess a distinct capability to respond to BMP4. Overall, our studies suggest a link between autocrine BMP signalling mediated through the Rho GTPase family and Snail- and Slug-induced EMT that may collectively contribute to aggressive OvCa behaviour.


Subject(s)
Biomarkers, Tumor/metabolism , Bone Morphogenetic Proteins/physiology , Mesoderm/enzymology , Ovarian Neoplasms/enzymology , rho GTP-Binding Proteins/metabolism , Bone Morphogenetic Protein 4 , Disease Progression , Enzyme Activation/physiology , Epithelium/enzymology , Epithelium/pathology , Female , Humans , Mesoderm/pathology , Ovarian Neoplasms/pathology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...