Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 270(1): 140-5, 2004 Feb 01.
Article in English | MEDLINE | ID: mdl-14693146

ABSTRACT

The influence of boron concentration (C(B)/mass%) on the surface tension of molten silicon has been investigated with the sessile drop method under oxygen partial pressure P(O(2))=1.62x10(-25)-2.63x10(-22) MPa, and the results can be summarized as follows. The surface tension increases with C(B) in the range below 2.09 mass%, and the maximum increase rate of the surface tension is about 30 mN m(-1)(mass% C(B))(-1). The temperature coefficient of the surface tension, ( partial differential sigma/ partial differential T)C(B), was found to increase with the boron concentration in molten silicon. At the interface between molten silicon and the BN substrate, a discontinuous Si(3)N(4) layer was reckoned to form and the layer might prevent BN from dissolving into the molten silicon. Since dissolved boron from the BN substrate into the molten silicon is below 0.054 mass% and the associated increase in surface tension is below 1.5 mN m(-1), the contamination from the BN substrate on the surface tension can be ignored. The relation between the surface tension and C(B) indicates negative adsorption of boron and can be well described by combining the Gibbs adsorption isotherm with the Langmuir isotherm.

2.
J Colloid Interface Sci ; 249(2): 471-5, 2002 May 15.
Article in English | MEDLINE | ID: mdl-16290623

ABSTRACT

The effect of antimony concentration (C(Sb)/mass%) on the surface tension of molten silicon has been determined with the sessile drop method in the temperature range from 1693 to 1773 K and in the range of the oxygen partial pressure, Po(2), in an Ar atmosphere from 10(-23) to 10(-21) MPa. The results show that the surface tension of molten silicon decreases with increasing Sb concentration in the range of C(Sb)<0.9 mass%, which indicates positive adsorption of Sb in molten silicon and can be fairly described with the Szyszkowski's equation. The maximum decrease rate of surface tension is about 65 mN m(-1) (mass% C(Sb))(-1), and the temperature coefficient of surface tension, (partial differential sigma/ partial differential T)C(Sb), increases with increasing C(Sb). The evaporation of the systems was only observed between the melting points of antimony (904 K) and silicon (1683 K), and the surface tension presents no dependence on measuring time above the melting point of silicon.

3.
J Colloid Interface Sci ; 253(1): 211-6, 2002 Sep 01.
Article in English | MEDLINE | ID: mdl-16290849

ABSTRACT

The local corrosion of magnesia-chrome refractories containing MgO-Al(2)O(3) spinel has been investigated near the slag-metal interface by immersion tests. The local corrosion extent near the slag-metal interface was found to decrease with the increase of FeO, MgO, and Al(2)O(3) contents in the slag. The local corrosion depths in the diagonal direction on the cross sections of the square prism specimens were always 2 times those in the normal direction of the lateral faces, and the cross sections maintained their initial square shape during whole the corrosion duration. The local corrosion is reckoned to be driven by the Marangori convection, which accelerated the mass transfer of the components dissolved from the refractories.

4.
J Colloid Interface Sci ; 254(2): 338-45, 2002 Oct 15.
Article in English | MEDLINE | ID: mdl-12702406

ABSTRACT

The surface tension of molten tin has been determined by the sessile drop method at temperatures ranging from 523 to 1033 K and in the oxygen partial pressure (P(O(2))) range from 2.85 x 10(-19) to 8.56 x 10(-6) MPa, and its dependence on temperature and oxygen partial pressure has been analyzed. At P(O(2))=2.85 x 10(-19) and 1.06 x 10(-15) MPa, the surface tension decreases linearly with the increase of temperature and its temperature coefficients are -0.151 and -0.094 mN m(-1) K(-1), respectively. However, at high P(O(2)) (3.17 x 10(-10), 8.56 x 10(-6) MPa), the surface tension increases with the temperature near the melting point (505 K) and decreases above 723 K. The surface tension decrease with increasing P(O(2)) is much larger near the melting point than at temperatures above 823 K. The contact angle between the molten tin and the alumina substrate is 158-173 degrees, and the wettability is poor.

SELECTION OF CITATIONS
SEARCH DETAIL
...