Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Physiol ; 60(5): 1082-1097, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30753604

ABSTRACT

Triterpenes (C30) constitute one of the diverse class of natural products with potential applications in food, cosmetic and pharmaceutical industries. Soyasaponins are oleanane-type triterpenoids widespread among legumes and particularly abundant in soybean seeds. They have associated with various pharmacological implications and undesirable taste properties of soybean-based food products. Uncovering the biosynthetic genes of soyasaponins will provide new opportunities to control the pathway for human benefits. However, the pathway of soyasaponin biosynthesis has not been fully elucidated in part because of a paucity of natural mutants. Here, we applied a structured high-density soybean mutant library for the forward genetic screening of triterpenoid biosynthesis. The seed soyasaponin polymorphism in the mutant library was evaluated using a high-throughput thin-layer chromatography and liquid chromatography tandem mass spectrometry analysis. This screening identified 35 mutants (3.85% of 909 mutant lines) with seven unusual soyasaponin phenotypes (Categories 1-7), which was greater than the number of natural mutants reported previously (22 mutants, 0.18% of ∼12,428 accessions). Nine unique intermediates of soyasaponin biosynthesis were identified and their chemical structures were estimated based on their MS/MS fragment patterns. Based on published information, 19 mutants could be associated with loss of function of four individual soyasaponin biosynthesis genes identified through expressed sequence tag mining or positional cloning, whereas the remaining 16 mutants were novel and may facilitate discovery of the unknown biosynthetic genes of soyasaponins. Our approach and library may help to identify new phenotype materials and causative genes associated with specialized metabolite production and other traits.


Subject(s)
Glycine max/genetics , Triterpenes/metabolism , Mutation/genetics , Saponins/metabolism , Tandem Mass Spectrometry
2.
PLoS One ; 13(1): e0192150, 2018.
Article in English | MEDLINE | ID: mdl-29381775

ABSTRACT

In soybean, triterpenoid saponin is one of the major secondary metabolites and is further classified into group A and DDMP saponins. Although they have known health benefits for humans and animals, acetylation of group A saponins causes bitterness and gives an astringent taste to soy products. Therefore, several studies are being conducted to eliminate acetylated group A saponins. Previous studies have isolated and characterized the Sg-5 (Glyma.15g243300) gene, which encodes the cytochrome P450 72A69 enzyme and is responsible for soyasapogenol A biosynthesis. In this study, we elucidated the molecular identity of a novel mutant of Glycine soja, 'CWS5095'. Phenotypic analysis using TLC and LC-PDA/MS/MS showed that the mutant 'CWS5095' did not produce any group A saponins. Segregation analysis showed that the absence of group A saponins is controlled by a single recessive allele. The locus was mapped on chromosome 15 (4.3 Mb) between Affx-89193969 and Affx-89134397 where the previously identified Glyma.15g243300 gene is positioned. Sequence analysis of the coding region for the Glyma.15g243300 gene revealed the presence of four SNPs in 'CWS5095' compared to the control lines. One of these four SNPs (G1127A) leads to the amino acid change Arg376Lys in the EXXR motif, which is invariably conserved among the CYP450 superfamily proteins. Co-segregation analysis showed that the missense mutation (Arg376Lys) was tightly linked with the absence of group A saponins in 'CWS5095'. Even though Arg and Lys have similar chemical features, the 3D modelled protein structure indicates that the replacement of Arg with Lys may cause a loss-of-function of the Sg-5 protein by inhibiting the stable binding of a heme cofactor to the CYP72A69 apoenzyme.


Subject(s)
Alleles , Genes, Plant , Glycine max/genetics , Saponins/genetics
3.
Plant J ; 89(3): 527-539, 2017 02.
Article in English | MEDLINE | ID: mdl-27775214

ABSTRACT

Triterpenoid saponins are major components of secondary metabolites in soybean seeds and are divided into two groups: group A saponins, and 2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP) saponins. The aglycone moiety of group A saponins consists of soyasapogenol A (SA), which is an oxidized ß-amyrin product, and the aglycone moiety of the DDMP saponins consists of soyasapogenol B (SB). Group A saponins produce a bitter and astringent aftertaste in soy products, whereas DDMP saponins have known health benefits for humans. We completed map-based cloning and characterization of the gene Sg-5, which is responsible for SA biosynthesis. The naturally occurring sg-5 mutant lacks group A saponins and has a loss-of-function mutation (L164*) in Glyma15g39090, which encodes the cytochrome P450 enzyme, CYP72A69. An enzyme assay indicated the hydroxylase activity of recombinant CYP72A69 against SB, which also suggested the production of SA. Additionally, induced Glyma15g39090 mutants (R44* or S348P) lacked group A saponins similar to the sg-5 mutant, indicating that Glyma15g39090 corresponds to Sg-5. Endogenous levels of DDMP saponins were higher in the sg-5 mutant than in the wild-type lines due to the loss of the enzyme activity that converts SB to SA. Interestingly, the genomes of palaeopolyploid soybean and the closely related common bean carry multiple Sg-5 paralogs in a genomic region syntenic to the soybean Sg-5 region. However, SA did not accumulate in common bean samples, suggesting that Sg-5 activity evolved after gene duplication event(s). Our results demonstrate that metabolic switching of undesirable saponins with beneficial saponins can be achieved in soybean by disabling Sg-5.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Glycine max/metabolism , Plant Proteins/metabolism , Saponins/metabolism , Base Sequence , Cytochrome P-450 Enzyme System/classification , Cytochrome P-450 Enzyme System/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Genetic Variation , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Molecular Structure , Mutation , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/chemistry , Oleanolic Acid/metabolism , Phylogeny , Plant Proteins/genetics , Saponins/chemistry , Glycine max/genetics , Triterpenes/chemistry , Triterpenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...