Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 127(7): 1642-1648, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36787463

ABSTRACT

X-ray photoemission spectroscopy (XPS) provides direct information on atomic composition and stoichiometry by measuring core-electron binding energies. Moreover, from the shift of the binding energy, the so-called chemical shift, the precise chemical type of bonds can be inferred, which brings additional information on the local structure. In this work, we present a theoretical study of the chemical shift first by comparing different theories, from Hartree-Fock and density functional theory to many-body perturbation theory approaches like the GW approximation and its static version (COHSEX). The accuracy of each theory is assessed with respect to a carbon 1s chemical shift experimental benchmark measured on a set of gas-phase molecules. More importantly, by decomposing the chemical shift into different contributions according to terms in the total Hamiltonian, classical electrostatics is identified as the major contributor to the chemical shift, one order of magnitude larger than the correlation.

2.
J Fluoresc ; 26(6): 2213-2223, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27592354

ABSTRACT

Four perylene derivatives, including commercially available dyes Lumogen Red and Lumogen Orange, as well as 1,6,7,12-tetrachlоrоperylene-3,4,9,10-tetradicarboxydianhydride (Dye I) and 3,4:9,10-bis(1,2-benzimidazole)- 1,6,7,12-tetra(4-tert-octylphenoxy) perylene (syn/ anti-isomers) (Dye III, which was prepared from dye I through intermediate 3,4:9,10-bis(1,2-benzimidazole)-1,6,7,12-tetrachloro perylene (Dye II)) were used for preparation of polysiloxane samples (PSi) containing different concentrations of gold nanoparticles (GN). Dyes I and III demonstrate significant fluorescence intensity increase upon addition of GN independent on excitation energy. For Lumogen Red composition in PSi some increase of fluorescence intensity was observed upon addition of small concentrations of GN, while further increase of GN concentration quenches fluorescence. The increase of Lumogen Red emission intensity, which depends on energy of excitation, is probably due to the increase of radiation decay rate since excitation rate decreases. Effect of GN on Lumogen Orange provided quenching of fluorescence even at small concentrations of GN. Calculations at DFT level of approximation for dye III suggest location of GN in plane of perylene core for increase of fluorescence intensity.

SELECTION OF CITATIONS
SEARCH DETAIL
...