Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 75: 95-103, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28415551

ABSTRACT

The main aim of this study was to investigate the properties of an AZ91 alloy coated with nanostructured hydroxyapatite (HA) prepared by radio frequency (RF) magnetron sputtering. The bioactivity and biomineralization of the AZ91 magnesium alloy coated with HA were investigated in simulated body fluid (SBF) via an in vitro test. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analyses were performed. The samples were immersed in SBF to study the ability of the surface to promote the formation of an apatite layer as well as corrosion resistance and mass change of the HA-coated AZ91 alloy. Electrochemical tests were performed to estimate the corrosion behaviour of HA-coated and uncoated samples. The results revealed the capability of the HA coating to significantly improve the corrosion resistance of the uncoated AZ91 alloy.


Subject(s)
Alloys/chemistry , Coated Materials, Biocompatible/chemistry , Durapatite/chemistry , Magnesium/chemistry , Nanostructures/chemistry , Corrosion
2.
J Mech Behav Biomed Mater ; 46: 127-36, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25792410

ABSTRACT

The structure, composition and morphology of a radio-frequency (RF) magnetron sputter-deposited dense nano-hydroxyapatite (HA) coating that was deposited on the surface of an AZ31 magnesium alloy were characterized using AFM, SEM, EDX and XRD. The results obtained from SEM and XRD experiments revealed that the bias applied during the deposition of the HA coating resulted in a decrease in the grain and crystallite size of the film having a crucial role in enhancing the mechanical properties of the fabricated biocomposites. A maximum hardness of 9.04 GPa was found for the HA coating, which was prepared using a bias of -50 V. The hardness of the HA film deposited on the grounded substrate (GS) was found to be 4.9 GPa. The elastic strain to failure (H/E) and the plastic deformation resistance (H(3)/E(2)) for an indentation depth of 50 nm for the HA coating fabricated at a bias of -50 V was found to increase by ~30% and ~74%, respectively, compared with the coating deposited at the GS holder. The nanoindentation tests demonstrated that all of the HA coatings increased the surface hardness on both the microscale and the nanoscale. Therefore, the results revealed that the films deposited on the surface of the AZ31 magnesium alloy at a negative substrate bias can significantly enhance the wear resistance of this resorbable alloy.


Subject(s)
Alloys/chemistry , Durapatite/chemistry , Magnesium/chemistry , Magnetic Fields , Mechanical Phenomena , Nanostructures/chemistry , Radio Waves , Coated Materials, Biocompatible/chemistry , Electrons , Hardness , Materials Testing , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...