Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Molecules ; 29(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38792042

ABSTRACT

1,3,5-Tris-(α-naphthyl)benzene is an organic non-electrolyte with notable stability of an amorphous phase. Its glassy and supercooled liquid states were previously studied by spectroscopic and calorimetric methods. Despite the continuing interest in its amorphous state and, particularly, vapor-deposited glasses, the thermodynamic parameters of the vaporization of 1,3,5-tris-(α-naphthyl)benzene have not been obtained yet. Likewise, the reliable evaluation of the thermodynamic parameters of fusion below the melting point, required to establish the thermodynamic state of its glass, is still an unsolved problem. In this work, the heat capacities of crystalline and liquid phases, the temperature dependence of the saturated vapor pressures, fusion and vaporization enthalpies were determined using differential and fast scanning calorimetry and were verified using the estimates based on solution calorimetry. The structural features of 1,3,5-tris-(α-naphthyl)benzene are discussed based on the computations performed and the data on the molecular refractivity. The consistency between the values obtained by independent techniques was demonstrated.

2.
Int J Biol Macromol ; 266(Pt 2): 131338, 2024 May.
Article in English | MEDLINE | ID: mdl-38569987

ABSTRACT

Development of nanoparticles (NPs) serving as contrast enhancing agents in MRI requires a combination of high contrasting effect with the biosafety and hemocompatibility. This work demonstrates that bovine serum albumin (BSA) molecules bound to paramagnetic Mn2+ ions are promising building blocks of such NPs. The desolvation-induced denaturation of BSA bound with Mn2+ ions followed by the glutaraldehyde-facilitated cross-linking provides the uniform in size 102.0 ± 0.7 nm BSA-based nanoparticles (BSA-NPs) loaded with Mn2+ ions, which are manifested in aqueous solutions as negatively charged spheres with high colloid stability. The optimal loading of Mn2+ ions into BSA-NPs provides maximum values of longitudinal and transverse relaxivity at 98.9 and 133.6 mM-1 s-1, respectively, which are among the best known from the literature. The spin trap EPR method indicates that Mn2+ ions bound to BSA-NPs exhibit poor catalytic activity in the Fenton-like reaction. On the contrary, the presence of BSA-NPs has an antioxidant effect by preventing the accumulation of hydroxyl radicals produced by H2O2. The NPs exhibit remarkably low hemolytic activity and hemagglutination can be avoided at concentrations lower than 110 µM. Thus, BSA-NPs bound with Mn2+ ions are promising candidates for combining high contrast effect with biosafety and hemocompatibility.


Subject(s)
Manganese , Serum Albumin, Bovine , Water , Serum Albumin, Bovine/chemistry , Manganese/chemistry , Water/chemistry , Animals , Protons , Cattle , Cross-Linking Reagents/chemistry , Nanoparticles/chemistry , Hemolysis/drug effects , Protein Denaturation/drug effects , Magnetic Resonance Imaging/methods , Humans
3.
Int J Biol Macromol ; 257(Pt 1): 128642, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061517

ABSTRACT

In this work, we describe the synthesis, interactions with bovine serum albumin, and cytotoxicity of new ionic liquids based on 5-fluorouracil (API-ILs) with different cations (imidazolium, choline, isoquinolinium, guanidinium). The secondary and tertiary structure of BSA in solutions with different concentrations of API-ILs was monitored by the circular dichroism (CD) technique. The addition of API-ILs does not lead to structural changes in BSA. A quenching of fluorescence spectra intensity of BSA in presence of all API-ILs was observed, allowing the quantification of binding between API-ILs and BSA. The preferred localization of both ions in API-ILs differs significantly depending on the structure of the cation according to molecular docking. The aggregation of BSA in presence of API-ILs was analyzed by the dynamic light scattering (DLS) method, revealing a moderate increase in particle size. Cytotoxicity and selectivity of API-ILs on cancer and normal cell lines were estimated, showing a clear modification of the pharmaceutic activity of ionic liquid compared to 5-fluorouracil.


Subject(s)
Ionic Liquids , Ionic Liquids/chemistry , Molecular Docking Simulation , Fluorouracil/pharmacology , Serum Albumin, Bovine/chemistry , Cations
4.
Molecules ; 28(20)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37894506

ABSTRACT

In this work, we present a comprehensive study of the thermodynamic properties of 3-and 4-ethoxyacetanilides. The heat capacities in crystalline, liquid, and supercooled liquid states from 80 to 475 K were obtained using adiabatic, differential scanning (DSC), and fast scanning (FSC) calorimetries. The fusion enthalpies at Tm were combined from DSC measurement results and the literature data. The fusion enthalpies at 298.15 K were evaluated in two independent ways: adjusted according to Kirchhoff's law of thermochemistry, and using Hess' law. For the latter approach, the enthalpies of the solution in DMF in crystalline and supercooled liquid states were derived. The values obtained by the two methods are consistent with each other. The standard thermodynamic functions (entropy, enthalpy, and Gibbs energy) between 80 and 470 K were calculated.

5.
Mol Pharm ; 20(6): 3202-3209, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37133972

ABSTRACT

The application of drugs in the amorphous state is one way to improve their bioavailability. As such, the determination of the optimal conditions for production and the assessment of the stability of the amorphous system are actively researched topics of present-day pharmaceutical science. In the present work, we have studied the kinetic stability and glass-forming ability of the thermally labile quinolone antibiotics using fast scanning calorimetry. The critical cooling rates for avoiding crystallization of the melts of oxolinic and pipemidic acids and sparfloxacin were determined to be 10 000, 40, and 80 K·s-1, respectively. The studied antibiotics were found to be "strong" glass formers. Based on a combination of nonisothermal and isothermal kinetic approaches, the Nakamura model was suitable for describing the crystallization process of the amorphous forms of the quinolone antibiotics.


Subject(s)
Anti-Bacterial Agents , Quinolones , Calorimetry, Differential Scanning , Crystallization , Calorimetry , Kinetics
6.
Int J Mol Sci ; 24(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37240295

ABSTRACT

It is known that four peptide fragments of predominant protein in human semen Semenogelin 1 (SEM1) (SEM1(86-107), SEM1(68-107), SEM1(49-107) and SEM1(45-107)) are involved in fertilization and amyloid formation processes. In this work, the structure and dynamic behavior of SEM1(45-107) and SEM1(49-107) peptides and their N-domains were described. According to ThT fluorescence spectroscopy data, it was shown that the amyloid formation of SEM1(45-107) starts immediately after purification, which is not observed for SEM1(49-107). Seeing that the peptide amino acid sequence of SEM1(45-107) differs from SEM1(49-107) only by the presence of four additional amino acid residues in the N domain, these domains of both peptides were obtained via solid-phase synthesis and the difference in their dynamics and structure was investigated. SEM1(45-67) and SEM1(49-67) showed no principal difference in dynamic behavior in water solution. Furthermore, we obtained mostly disordered structures of SEM1(45-67) and SEM1(49-67). However, SEM1(45-67) contains a helix (E58-K60) and helix-like (S49-Q51) fragments. These helical fragments may rearrange into ß-strands during amyloid formation process. Thus, the difference in full-length peptides' (SEM1(45-107) and SEM1(49-107)) amyloid-forming behavior may be explained by the presence of a structured helix at the SEM1(45-107) N-terminus, which contributes to an increased rate of amyloid formation.


Subject(s)
Amyloid , Peptides , Humans , Amino Acid Sequence , Peptides/chemistry , Amyloid/chemistry , Peptide Fragments/chemistry , Amyloidogenic Proteins , Circular Dichroism , Protein Folding , Amyloid beta-Peptides/chemistry
7.
ACS Nano ; 17(10): 9235-9244, 2023 May 23.
Article in English | MEDLINE | ID: mdl-36976247

ABSTRACT

Halide perovskites belong to an important family of semiconducting materials with electronic properties that enable a myriad of applications, especially in photovoltaics and optoelectronics. Their optical properties, including photoluminescence quantum yield, are affected and notably enhanced at crystal imperfections where the symmetry is broken and the density of states increases. These lattice distortions can be introduced through structural phase transitions, allowing charge gradients to appear near the interfaces between phase structures. In this work, we demonstrate controlled multiphase structuring in a single perovskite crystal. The concept uses cesium lead bromine (CsPbBr3) placed on a thermoplasmonic TiN/Si metasurface and enables single-, double-, and triple-phase structures to form on demand above room temperature. This approach promises application horizons of dynamically controlled heterostructures with distinctive electronic and enhanced optical properties.

8.
J Chem Phys ; 158(5): 054504, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36754785

ABSTRACT

The specific features of crystal nucleation widely determine the morphology of the evolving crystalline material. Crystal nucleation is, as a rule, not accessible by direct observation of the nuclei, which develop with time. This limitation is caused by the small size (nanometer scale) of the critical nuclei and the stochastic nature of their formation. We describe an experimental approach to the determination of specific features of the cluster size distribution employing fast scanning calorimetry at scanning rates up to 10 000 K s-1. The surviving cluster fraction is determined by selectively melting/dissolving clusters smaller than the critical size corresponding to the highest temperature of a short spike positioned between the nucleation and the development stage in Tammann's two-stage method. This approach allows for estimating the time evolution of the radius of the largest detectable clusters in the distribution. Knowing this radius as a function of nucleation time allows for determining a radial growth rate. In the example of poly(l-lactic acid) (PLLA), the order of magnitude estimate of radial growth rates of clusters of about 2-5 nm yields values between 10-5 and 10-3 nm s-1. The radial growth rate of micrometer-sized spherulites is available from optical microscopy. The corresponding values are about three orders of magnitude higher than the values for the nanometer-sized clusters. This difference is explainable by stochastic effects, transient features, and the size dependence of the growth processes on the nanometer scale. The experimental and (order of magnitude) classical nucleation theory estimates agree well.

9.
Int J Mol Sci ; 23(23)2022 Dec 04.
Article in English | MEDLINE | ID: mdl-36499625

ABSTRACT

As a result of bright complexation properties, easy functionalization and the ability to self-organize in an aqueous solution, amphiphilic supramolecular macrocycles are being actively studied for their application in nanomedicine (drug delivery systems, therapeutic and theranostic agents, and others). In this regard, it is important to study their potential toxic effects. Here, the synthesis of amphiphilic calix[4]resorcinarene carboxybetaines and their esters and the study of a number of their microbiological properties are presented: cytotoxic effect on normal and tumor cells and effect on cellular and non-cellular components of blood (hemotoxicity, anti-platelet effect, and anticoagulant activity). Additionally, the interaction of macrocycles with bovine serum albumin as a model plasma protein is estimated by various methods (fluorescence spectroscopy, synchronous fluorescence spectroscopy, circular dichroic spectroscopy, and dynamic light scattering). The results demonstrate the low toxicity of the macrocycles, their anti-platelet effects at the level of acetylsalicylic acid, and weak anticoagulant activity. The study of BSA-macrocycle interactions demonstrates the dependence on macrocycle hydrophilic/hydrophobic group structure; in the case of carboxybetaines, the formation of complexes prevents self-aggregation of BSA molecules in solution. The present study demonstrates new data on potential drug delivery nanosystems based on amphiphilic calix[4]resorcinarenes for their cytotoxicity and effects on blood components.


Subject(s)
Esters , Serum Albumin, Bovine , Esters/pharmacology , Serum Albumin, Bovine/chemistry , Spectrometry, Fluorescence , Hydrophobic and Hydrophilic Interactions , Water/chemistry
10.
Int J Mol Sci ; 23(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36361919

ABSTRACT

The first evidence of native cyclodextrins fusion was registered using fast scanning calorimetry (FSC) with heating rates up to 40,000 K s-1. The endothermal effects, detected at low heating rates, correspond to the decomposition processes. Upon the increase of the heating rate the onset of these effects shifts to higher temperatures, reaching a limiting value at high heating rates. The limiting temperatures were identified as the melting points of α-, ß- and γ-cyclodextrins, as the decomposition processes are suppressed at high heating rates. For γ-cyclodextrin the fusion enthalpy was measured. The activation energies of thermal decomposition of cyclodextrins were determined by dependence of the observed thermal effects on heating rates from 4 K min-1 in conventional differential scanning calorimetry to 40,000 K s-1 in FSC. The lower thermal stability and activation energy of decomposition of ß-cyclodextrin than for the other two cyclodextrins were found, which may be explained by preliminary phase transition and chemical reaction without mass loss. The obtained values of fusion parameters of cyclodextrins are needed in theoretical models widely used for prediction of solubility and solution rates and in preparation of cyclodextrin inclusion compounds involving heating.


Subject(s)
Cyclodextrins , Cyclodextrins/chemistry , Calorimetry, Differential Scanning , Calorimetry , Thermodynamics , Solubility
11.
Phys Chem Chem Phys ; 24(43): 26785-26794, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36314506

ABSTRACT

Chiral crystals remain one of the probable sources of first minute chiral symmetry breaking, a trigger that potentially causes an as-yet unknown type of asymmetric autocatalysis during the formation of chiral biopolymers under the conditions of the Archean Earth. Therefore, studying adsorption processes on the surface of such crystals may help improve the understanding of the nature of the initial chiral shift. The adsorptive activity of non-porous crystals with respect to the majority of organic molecules essentially depends on the ability of a crystal surface to engage in specific intermolecular interactions. In this work, the enantioselectivity provided by hippuric acid and phloroglucinol crystals, obtained under Viedma ripening conditions, was studied by the adsorption of menthol enantiomers from solutions and the adsorption of limonene and α-pinene enantiomers from vapors. To establish the reliability of chiral recognition, the experimental adsorption isotherms on chiral crystals were compared with the isotherms on achiral (racemic mixtures) crystals, obtained under similar conditions. The data obtained were confirmed using CD spectra, XRD patterns and SEM images. A t-test was used to assess the statistical significance of differences in adsorption. From the adsorption isotherms of vapors at different temperatures, the isosteric heats of adsorption and the differential entropies of adsorption were calculated. It was determined that the chiral recognition ability depends not only on the difference between enantiomers in the thermodynamic functions of adsorption, but also on the isosteric heats of adsorption at low coverages and the heat of liquefaction ratio. If intermolecular interactions between the enantiomer and the surface are too weak, then enantiomer layer formation becomes difficult. This reduces the enantioselectivity or even makes chiral recognition impossible. The physicochemical regularities revealed in this present work made it possible to formulate the requirements that enantiomorphous crystals must meet for satisfactory chiral recognition of molecules of different polarities.


Subject(s)
Adsorption , Reproducibility of Results , Stereoisomerism , Thermodynamics
12.
Bioorg Chem ; 117: 105415, 2021 12.
Article in English | MEDLINE | ID: mdl-34673453

ABSTRACT

Pillar[5]arenes containing sulfonate fragments have been shown to form supramolecular complexes with therapeutic proteins to facilitate targeted transport with an increased duration of action and enhanced bioavailability. Regioselective synthesis was used to obtain a water-soluble pillar[5]arene containing the fluorescent label FITC and nine sulfoethoxy fragments. The pillar[5]arene formed complexes with the therapeutic proteins binase, bleomycin, and lysozyme in a 1:2 ratio as demonstrated by UV-vis and fluorescence spectroscopy. The formation of stable spherical nanosized macrocycle/binase complexes with an average particle size of 200 nm was established by dynamic light scattering and transmission electron microscopy. Flow cytometry demonstrated the ability of macrocycle/binase complexes to penetrate into tumor cells where they exhibited significant cytotoxicity towards A549 cells at 10-5-10-6 M while maintaining the enzymatic activity of binase.


Subject(s)
Calixarenes/chemistry , Excipients/chemistry , Proteins/chemistry , Quaternary Ammonium Compounds/chemistry , A549 Cells , Bleomycin/chemistry , Bleomycin/pharmacology , Endoribonucleases/chemistry , Endoribonucleases/pharmacology , Humans , Muramidase/chemistry , Muramidase/pharmacology , Protein Stability/drug effects , Proteins/pharmacology , Solubility , Water/chemistry
13.
Molecules ; 26(5)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807791

ABSTRACT

In the present work, the thermochemistry of solution, solvation, and hydrogen bonding of cyclic amides in proton acceptor (B) and proton donor (RXH) solvents were studied. The infinite dilution solution enthalpies of δ-valerolactam, N-methylvalerolactam, ε-caprolactam, and N-methylcaprolactam were measured at 298.15 K. The solvation enthalpies of cyclic amides were calculated based on the measured solution enthalpies and sublimation/vaporization enthalpies from literature. The enthalpies of hydrogen bonding between cyclic amides and proton acceptor and donor solvents were then calculated as a difference between the total solvation enthalpy and the non-specific contribution. The latter was estimated via two different approaches in proton donor and proton accepting solvents. The effect of the cycle size on the strength of hydrogen bonding of the cyclic amides in solution is discussed.


Subject(s)
Amides/chemistry , Lactams/chemistry , Solvents/chemistry , Calorimetry , Caprolactam/chemistry , Hydrogen Bonding , Piperidones/chemistry , Protons
14.
Nanomaterials (Basel) ; 10(12)2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33327421

ABSTRACT

Synthetic organic 2D materials are attracting careful attention of researchers due to their excellent functionality in various applications, including storage batteries, catalysis, thermoelectricity, advanced electronics, superconductors, optoelectronics, etc. In this work, thiacalix[4]arene derivatives functionalized by geranyl fragments at the lower rim in cone and 1,3-alternate conformations, that are capable of controlled self-assembly in a 2D nanostructures were synthesized. X-ray diffraction analysis showed the formation of 2D monomolecular-layer nanosheets from synthesized thiacalix[4]arenes, the distance between which depends on the stereoisomer used. It was established by DSC, FSC, and PXRD methods that the obtained macrocycles are capable of forming different crystalline polymorphs, moreover dimethyl sulphoxide (DMSO) is contributing to the formation of a more stable polymorph for cone stereoisomer. The obtained crystalline 2D materials based on synthesized thiacalix[4]arenes can find application in material science and medicine for the development of modern pharmaceuticals and new generation materials.

15.
Nanomaterials (Basel) ; 10(4)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316551

ABSTRACT

Controlling the self-assembly of polyfunctional compounds in interpolyelectrolyte aggregates is an extremely challenging task. The use of macrocyclic compounds offers new opportunities in design of a new generation of mixed nanoparticles. This approach allows creating aggregates with multivalent molecular recognition, improved binding efficiency and selectivity. In this paper, we reported a straightforward approach to the synthesis of interpolyelectrolytes by co-assembling of the thiacalix[4]arene with four negatively charged functional groups on the one side of macrocycle, and pillar[5]arene with 10 ammonium groups located on both sides. Nanostructured polyelectrolyte complexes show effective packaging of high-molecular DNA from calf thymus. The interaction of co-interpolyelectrolytes with the DNA is completely different from the interaction of the pillar[5]arene with the DNA. Two different complexes with DNA, i.e., micelleplex- and polyplex-type, were formed. The DNA in both cases preserved its secondary structure in native B form without distorting helicity. The presented approach provides important advantage for the design of effective biomolecular gene delivery systems.

16.
J Pept Sci ; 25(8): e3177, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31317614

ABSTRACT

Thermal treatment of short-chain oligopeptides is able to initiate the process of their self-assembly with the formation of organic nanostructures with unique properties. On the other hand, heating can lead to a chemical reaction with the formation of new substances with specific properties and ability to form structures with different morphology. Therefore, in order to have a desired process, researcher needs to find its temperature range. In the present work, cyclization of L -isoleucyl-L -alanine dipeptide in the solid state upon heating was studied. Kinetic parameters of this reaction were estimated within the approaches of the nonisothermal kinetics. The correlation between side chain structure of dipeptides and temperature of their cyclization in the solid state was found for the first time. This correlation may be used to predict the temperature, at which dipeptide self-assembly changes to chemical reaction. The differences in self-assembly of linear and cyclic dipeptides were demonstrated using atomic force microscopy. The effect of dipeptide concentration in a source solution and an organic solvent used on self-assembly of dipeptides was shown. The new information obtained on the thermal properties and self-assembly of linear and cyclic forms of L -isoleucyl-L -alanine may be useful for the design of new nanomaterials based on oligopeptides, as well as for the synthesis of cyclic oligopeptides.


Subject(s)
Alanine/chemistry , Dipeptides/chemical synthesis , Isoleucine/chemistry , Temperature , Cyclization , Dipeptides/chemistry , Gas Chromatography-Mass Spectrometry , Kinetics , Molecular Conformation
17.
Chempluschem ; 84(10): 1560-1566, 2019 10.
Article in English | MEDLINE | ID: mdl-31943934

ABSTRACT

A nanocarrier (p(6SRA-5B)) for glucose-controlled insulin delivery consists of sulfonated resorcinarenes (SRA) that are assembled into a spherical shell and are attached to each other with phenylboronate linkers. p(6SRA-5B) is stable in water and blood plasma at normal glucose concentrations. At high glucose levels (>5 mM), p(6SRA-5B) dissociates into SRA and phenylboronates through competitive interaction with excess glucose. Insulin was successfully encapsulated into the cavity of p(6SRA-5B) and its release was investigated in water and blood plasma by NMR, UV, CD, and fluorescence spectroscopy. The results show that the dissociation of the nanocarrier and the insulin release occurs with an increase in glucose concentration. At 5 mM glucose, the nanocarrier is stable, and the insulin release does not exceed 10 %. Increasing the glucose concentration to 7.5-10 mM results in a 40-100 % insulin release. p(6SRA-5B) is thus a promising insulin nanocarrier for the treatment of type 1 diabetes.


Subject(s)
Calixarenes/chemistry , Drug Carriers/chemistry , Drug Delivery Systems/methods , Glucose/pharmacology , Insulin/administration & dosage , Phenylalanine/analogs & derivatives , Boronic Acids/chemistry , Diabetes Mellitus, Type 1/drug therapy , Drug Liberation/drug effects , Humans , Phenylalanine/chemistry , Polymers/chemistry , Sulfonic Acids/chemistry
18.
Biochim Biophys Acta Gen Subj ; 1862(9): 2024-2030, 2018 09.
Article in English | MEDLINE | ID: mdl-29964144

ABSTRACT

BACKGROUND: Protein denaturation is often studied using differential scanning calorimetry (DSC). However, conventional instruments are limited in the temperature scanning rate available. Fast scanning calorimetry (FSC) provides an ability to study processes at much higher rates while using extremely small sample masses [ng]. This makes it a very interesting technique for protein investigation. METHODS: A combination of conventional DSC and fast scanning calorimeters was used to study denaturation of lysozyme dissolved in glycerol. Glycerol was chosen as a solvent to prevent evaporation from the micro-sized samples of the fast scanning calorimeter. RESULTS: The lysozyme denaturation temperatures in the range of scanning rates from 5 K/min to ca. 500,000 K/min follow the Arrhenius law. The experimental results for FSC and conventional DSC fall into two distinct clusters in a Kissinger plot, which are well approximated by two parallel straight lines. CONCLUSIONS: The transition temperatures for the unfolding process measured on fast scanning calorimetry sensor are significantly lower than what could be expected from the results of conventional DSC using extrapolation to high scanning rates. Evidence for the influence of the relative surface area on the unfolding temperature was found. GENERAL SIGNIFICANCE: For the first time, fast scanning calorimetry was employed to study protein denaturation with a range of temperature scanning rates of 5 orders of magnitude. Decreased thermal stability of the micro-sized samples on the fast scanning calorimeter raise caution over using bulk solution thermal stability data of proteins for applications where micro-sized dispersed protein solutions are used, e.g., spray drying.


Subject(s)
Calorimetry, Differential Scanning/instrumentation , Calorimetry, Differential Scanning/methods , Muramidase/chemistry , Protein Folding , Animals , Protein Denaturation
19.
Beilstein J Nanotechnol ; 8: 1825-1835, 2017.
Article in English | MEDLINE | ID: mdl-29046831

ABSTRACT

New water-soluble tetra-substituted derivatives of p-tert-butylthiacalix[4]arene containing fragments of L-tryptophan in cone and 1,3-alternate conformations were obtained. It was shown that the resulting compounds form stable, positively charged aggregates of 86-134 nm in diameter in water at a concentration of 1 × 10-4 M as confirmed by dynamic light scattering, scanning electron microscopy and transmission electron microscopy. It was established that these aggregates are fluorescently active and chiral. A distinctive feature of the compounds is the pronounced dependence of their spectral (emission and chiroptical) properties on the polarity of the solvent and the length of the linker between the macrocyclic and fluorophore parts of the molecule.

20.
Mater Sci Eng C Mater Biol Appl ; 76: 551-558, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28482563

ABSTRACT

The work introduces Tb(III)-centered luminescence of amino-modified silica nanoparticles doped with Tb(III) complexes for cellular imaging. For these purposes water-in-oil procedure was optimized for synthesis of 20 and 35nm luminescent nanoparticles with amino-groups embedded on the surface. The obtained results indicate an impact of the nanoparticle size in decoration, aggregation behavior and luminescent properties of the nanoparticles in protein-based buffer solutions. Formation of a protein-based corona on the nanoparticles surface was revealed through the effect of the nanoparticles on helical superstructure of BSA. This effect is evident from CD spectral data, while no any size impact on the adsorption of BSA onto aminomodified silica surface was observed. Cellular uptake of the nanoparticles studied by confocal and TEM microscopy methods indicates greater cellular uptake for the smaller nanoparticles. Cytotoxicity of the nanoparticles was found to agree well with their cellular uptake behavior, which in turn was found to be greater for the smaller nanoparticles.


Subject(s)
Metal Nanoparticles , Luminescence , Silicon Dioxide , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...