Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nanoscale ; 15(41): 16752-16765, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37817681

ABSTRACT

Flash-sintered (FS) ceramics have shown promising mechanical deformability at room temperature compared to conventional sintered ceramics. One major contributing factor to plasticity is high-density defects, such as dislocations, stacking faults and point defects, resulted presumably from the high electrical field during flash sintering. However, such direct experiemtnal evidence for defect formation and evolution under the electric field remains lacking. Here we performed in situ biasing experiments in FS and conventionally sintered (CS) polycrystalline TiO2 in a transmission electron microscope (TEM) to compare the defect evolution dynamics. In situ TEM studies revealed the coalescence of point defects under the electrical field in both FS and CS TiO2 and the subsequent formation of stacking faults, which are often referred to as Wadsley defects. Surprisingly, under the electrical field, the average fault growth rate in the FS samples is 10 times as much as that in the CS TiO2. Furthermore, the Magnéli phase, a 3D oxygen-deficient phase formed by the aggregation of Wadsley defects, is observed in the FS samples, but not in the CS samples. The present study provides new insights into defect dynamics in FS ceramics.

2.
Sci Adv ; 5(9): eaaw5519, 2019 09.
Article in English | MEDLINE | ID: mdl-32047855

ABSTRACT

Ceramic materials have been widely used for structural applications. However, most ceramics have rather limited plasticity at low temperatures and fracture well before the onset of plastic yielding. The brittle nature of ceramics arises from the lack of dislocation activity and the need for high stress to nucleate dislocations. Here, we have investigated the deformability of TiO2 prepared by a flash-sintering technique. Our in situ studies show that the flash-sintered TiO2 can be compressed to ~10% strain under room temperature without noticeable crack formation. The room temperature plasticity in flash-sintered TiO2 is attributed to the formation of nanoscale stacking faults and nanotwins, which may be assisted by the high-density preexisting defects and oxygen vacancies introduced by the flash-sintering process. Distinct deformation behaviors have been observed in flash-sintered TiO2 deformed at different testing temperatures, ranging from room temperature to 600°C. Potential mechanisms that may render ductile ceramic materials are discussed.

3.
Nat Commun ; 9(1): 2063, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29802244

ABSTRACT

Flash sintering has attracted significant attention as its remarkably rapid densification process at low sintering furnace temperature leads to the retention of fine grains and enhanced dielectric properties. However, high-temperature mechanical behaviors of flash-sintered ceramics remain poorly understood. Here, we present high-temperature (up to 600 °C) in situ compression studies on flash-sintered yttria-stabilized zirconia (YSZ). Below 400 °C, the YSZ exhibits high ultimate compressive strength exceeding 3.5 GPa and high inelastic strain (~8%) due primarily to phase transformation toughening. At higher temperatures, crack nucleation and propagation are significantly retarded, and prominent plasticity arises mainly from dislocation activity. The high dislocation density induced in flash-sintered ceramics may have general implications for improving the plasticity of sintered ceramic materials.

4.
Materials (Basel) ; 9(5)2016 May 14.
Article in English | MEDLINE | ID: mdl-28773498

ABSTRACT

A need to deeper understand the influence of electric current on the structure and properties of metallic materials consolidated by Spark Plasma Sintering (SPS) stimulates research on inter-particle interactions, bonding and necking processes in low-pressure or pressureless conditions as favoring technique-specific local effects when electric current passes through the underdeveloped inter-particle contacts. Until now, inter-particle interactions during pressureless SPS have been studied mainly for particles of the same material. In this work, we focused on the interactions between particles of dissimilar materials in mixtures of micrometer-sized Fe and Al powders forming porous compacts during pressureless SPS at 500-650 °C. Due to the chemical interaction between Al and Fe, necks of conventional shape did not form between the dissimilar particles. At the early interaction stages, the Al particles acquired shell morphology. It was shown that this morphology change was not related to the influence of electric current but was due to the Kirkendall effect in the Fe-Al system and particle rearrangement in a porous compact. No experimental evidence of melting or melt ejection during pressureless SPS of the Fe-Al mixtures or Fe and Al powders sintered separately was observed. Porous FeAl-based compacts could be obtained from Fe-40at.%Al mixtures by pressureless SPS at 650 °C.

5.
Sci Rep ; 3: 1061, 2013.
Article in English | MEDLINE | ID: mdl-23320142

ABSTRACT

Strain hardening capability is critical for metallic materials to achieve high ductility during plastic deformation. A majority of nanocrystalline metals, however, have inherently low work hardening capability with few exceptions. Interpretations on work hardening mechanisms in nanocrystalline metals are still controversial due to the lack of in situ experimental evidence. Here we report, by using an in situ transmission electron microscope nanoindentation tool, the direct observation of dynamic work hardening event in nanocrystalline nickel. During strain hardening stage, abundant Lomer-Cottrell (L-C) locks formed both within nanograins and against twin boundaries. Two major mechanisms were identified during interactions between L-C locks and twin boundaries. Quantitative nanoindentation experiments recorded show an increase of yield strength from 1.64 to 2.29 GPa during multiple loading-unloading cycles. This study provides both the evidence to explain the roots of work hardening at small length scales and the insight for future design of ductile nanocrystalline metals.

6.
Nanotechnology ; 21(7): 75706, 2010 Feb 19.
Article in English | MEDLINE | ID: mdl-20081287

ABSTRACT

Multifunctional transparent ferroelectric ceramics have widespread applications in electro-optical devices. Unfortunately, almost all currently used electro-optical ceramics contain a high lead concentration. In this work, via coupling of spark plasma sintering with high pressure, we have successfully synthesized bulk lead-free transparent nanostructured BaTiO(3) (abbreviated as BTO) and SrTiO(3) (STO) ceramics with excellent optical transparency in both visible and infrared wavelength ranges. This success highlights potential ingenious avenues to search for lead-free electro-optical ceramics.

7.
J Am Chem Soc ; 131(30): 10346-7, 2009 Aug 05.
Article in English | MEDLINE | ID: mdl-19588973

ABSTRACT

High-surface-area silicon oxycarbide macroporous fibers were fabricated through in situ cross-linking of a preceramic precursor without a prepatterned template. The unique luffa-like shell combined with intrinsic silicon-containing groups accounts for the resultant superhydrophobic property. Meanwhile, the oil-uptake capacity of the corresponding fiber mat is significantly improved by the capsulated nanoparticles.

8.
Nano Lett ; 5(12): 2593-7, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16351221

ABSTRACT

We report the successful demonstration for low-temperature and high-strain-rate superplastic forming of nanoceramic composites for the first time. Porous preforms of nanoceramic composites that were partially densified at low temperatures were superplastically deformed by SPS at the record low temperatures of approximately 1000 to 1050 degrees C, which are comparable to those of Ni-based superalloys. The maximum strain rate achieved is over 10(-2) s(-1), and a compressive strain over 200% can be obtained without cracking. The final products have nanosized grains with excellent optical properties. The present findings present a new strategy for nanoceramic superplasticity, demonstrating that a more practical application of nanoceramic superplasticity is not in the shaping of already-dense materials but in the near-net-shape forming of partially dense parts.


Subject(s)
Aluminum Oxide/chemistry , Ceramics/chemistry , Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Elasticity , Hardness , Materials Testing , Powders , Surface Properties , Temperature
9.
Nat Mater ; 2(1): 38-42, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12652671

ABSTRACT

The extraordinary mechanical, thermal and electrical properties of carbon nanotubes have prompted intense research into a wide range of applications in structural materials, electronics, chemical processing and energy management. Attempts have been made to develop advanced engineering materials with improved or novel properties through the incorporation of carbon nanotubes in selected matrices (polymers, metals and ceramics). But the use of carbon nanotubes to reinforce ceramic composites has not been very successful; for example, in alumina-based systems only a 24% increase in toughness has been obtained so far. Here we demonstrate their potential use in reinforcing nanocrystalline ceramics. We have fabricated fully dense nanocomposites of single-wall carbon nanotubes with nanocrystalline alumina (Al2O3) matrix at sintering temperatures as low as 1,150 degrees C by spark-plasma sintering. A fracture toughness of 9.7 MPa m 1/2, nearly three times that of pure nanocrystalline alumina, can be achieved.


Subject(s)
Aluminum Oxide/chemistry , Ceramics/chemistry , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Chemical Phenomena , Chemistry, Physical , Crystallization , Mechanics , Microscopy, Electron , Microscopy, Electron, Scanning , Surface Properties , Temperature
10.
Nat Mater ; 1(1): 45-8, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12618848

ABSTRACT

The mechanical behaviour of nanocrystalline materials (that is, polycrystals with a grain size of less than 100 nm) remains controversial. Although it is commonly accepted that the intrinsic deformation behaviour of these materials arises from the interplay between dislocation and grain-boundary processes, little is known about the specific deformation mechanisms. Here we use large-scale molecular-dynamics simulations to elucidate this intricate interplay during room-temperature plastic deformation of model nanocrystalline Al microstructures. We demonstrate that, in contrast to coarse-grained Al, mechanical twinning may play an important role in the deformation behaviour of nanocrystalline Al. Our results illustrate that this type of simulation has now advanced to a level where it provides a powerful new tool for elucidating and quantifying--in a degree of detail not possible experimentally--the atomic-level mechanisms controlling the complex dislocation and grain-boundary processes in heavily deformed materials with a submicrometre grain size.

SELECTION OF CITATIONS
SEARCH DETAIL
...