Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 186: 108583, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521046

ABSTRACT

BACKGROUND: Wildfires in the Western United States are a growing and significant source of air pollution that is eroding decades of progress in air pollution reduction. The effects on preterm birth during critical periods of pregnancy are unknown. METHODS: We assessed associations between prenatal exposure to wildland fire smoke and risk of preterm birth (gestational age < 37 weeks). We assigned smoke exposure to geocoded residence at birth for all live singleton births in California conceived 2007-2018, using weekly average concentrations of particulate matter ≤ 2.5 µm (PM2.5) attributable to wildland fires from United States Environmental Protection Agency's Community Multiscale Air Quality Model. Logistic regression yielded odds ratio (OR) for preterm birth in relation to increases in average exposure across the whole pregnancy, each trimester, and each week of pregnancy. Models adjusted for season, age, education, race/ethnicity, medical insurance, and smoking of the birthing parent. RESULTS: For the 5,155,026 births, higher wildland fire PM2.5 exposure averaged across pregnancy, or any trimester, was associated with higher odds of preterm birth. The OR for an increase of 1 µg/m3 of average wildland fire PM2.5 during pregnancy was 1.013 (95 % CI:1.008,1.017). Wildland fire PM2.5 during most weeks of pregnancy was associated with higher odds. Strongest estimates were observed in weeks in the second and third trimesters. A 10 µg/m3 increase in average wildland fire PM2·5 in gestational week 23 was associated with OR = 1.034; 95 % CI: 1.019, 1.049 for preterm birth. CONCLUSIONS: Preterm birth is sensitive to wildland fire PM2.5; therefore, we must reduce exposure during pregnancy.


Subject(s)
Air Pollutants , Maternal Exposure , Particulate Matter , Premature Birth , Smoke , Wildfires , Female , Pregnancy , Humans , Premature Birth/epidemiology , California/epidemiology , Particulate Matter/analysis , Adult , Maternal Exposure/statistics & numerical data , Smoke/analysis , Smoke/adverse effects , Air Pollutants/analysis , Wildfires/statistics & numerical data , Young Adult , Air Pollution/statistics & numerical data , Infant, Newborn
2.
J Air Waste Manag Assoc ; 71(2): 231-246, 2021 02.
Article in English | MEDLINE | ID: mdl-32091969

ABSTRACT

Air pollutant concentrations are often higher near major roadways than in the surrounding environments owing to emissions from on-road mobile sources. In this study, we quantified the gradient in black carbon (BC) and air toxics concentrations from the I-70 freeway in the Elyria-Swansea environmental justice neighborhood in Denver, Colorado, during three measurement campaigns in 2017-2018. The average hourly upwind-downwind gradient of BC concentrations from the roadway was 500-800 ng/m3, equal to an increment of approximately 30-80% above local background levels within 180 m of the freeway. When integrated over all wind directions, the gradients were smaller, approximately 150-300 ng/m3 (~11-18%) over the course of nearly four months of measurements. No statistically significant gradient in air toxics (e.g., benzene, formaldehyde, etc.) was found, likely because the uncertainties in the mean concentrations were larger than the magnitude of the gradient (<25%). This finding is in contrast to some earlier studies in which small gradients of benzene and other VOCs were found. We estimate that sample sizes of at least 100 individual measurements would have been required to estimate mean concentrations with sufficient certainty to quantify gradients on the order of ±10% uncertainty. These gradient estimates are smaller than those found in previous studies over the past two decades; more stringent emissions standards, the local fleet age distribution, and/or the steady turnover of the vehicle fleet may be reducing the overall impact of roadway emissions on near-road communities. Implications: Gradients of near-road pollution may be declining in the near-road environment as tailpipe emissions from the vehicle fleet continue to decrease. Near-road concentration gradients of mobile source air toxics, including benzene, 1,3-butadiene, and ethylbenzene, will require higher sample sizes to quantify as emissions continue to decline.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Benzene , Environmental Monitoring , Soot , Vehicle Emissions/analysis
3.
Sensors (Basel) ; 19(21)2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31671841

ABSTRACT

Low-cost sensors can provide insight on the spatio-temporal variability of air pollution, provided that sufficient efforts are made to ensure data quality. Here, 19 AirBeam particulate matter (PM) sensors were deployed from December 2016 to January 2017 to determine the spatial variability of PM2.5 in Sacramento, California. Prior to, and after, the study, the 19 sensors were deployed and collocated at a regulatory air monitoring site. The sensors demonstrated a high degree of precision during all collocated measurement periods (Pearson R2 = 0.98 - 0.99 across all sensors), with little drift. A sensor-specific correction factor was developed such that each sensor reported a comparable value. Sensors had a moderate degree of correlation with regulatory monitors during the study (R2 = 0.60 - 0.68 at two sites). In a multi-linear regression model, the deviation between sensor and reference measurements of PM2.5 had the highest correlation with dew point and relative humidity. Sensor measurements were used to estimate the PM2.5 spatial variability, finding an average pairwise coefficient of divergence of 0.22 and a range of 0.14 to 0.33, indicating mostly homogeneous distributions. No significant difference in the average sensor PM concentrations between environmental justice (EJ) and non-EJ communities (p value = 0.24) was observed.

4.
Article in English | MEDLINE | ID: mdl-31083326

ABSTRACT

We examined two near-road monitoring sites where the daily PM2.5 readings were among the highest of any near-road monitoring location in the U.S. during 2014-2016: Denver, Colorado, in February 2014 and Indianapolis, Indiana, in November 2016. At the Denver site, which had the highest measured U.S. near-road 24-hr PM2.5 concentrations in 2014, concentrations exceeded the daily National Ambient Air Quality Standards (NAAQS) on three days during one week in 2014; the Indianapolis site had the second-highest number of daily exceedances of any near-road site in 2016 and the highest 3-year average PM2.5 of any near-road site during 2014-2016. Both sites had hourly pollutant, meteorological, and traffic data available, making them ideal for case studies. For both locations, we compared air pollution observations at the near-road site to observations at other sites in the urban area to calculate the near-road PM2.5 "increment" and evaluated the effects of changes in meteorology and traffic. The Denver near-road site consistently had the highest PM2.5 values in the Denver area, and was typically highest when winds were near-downwind, rather than directly downwind, to the freeway. Complex Denver site conditions (near-road buildings and roadway alignment) likely contributed to higher PM2.5 concentrations. The increment at Indianapolis was also highest under near-downwind, rather than directly downwind, conditions. At both sites, while the near-road site often had higher PM2.5 concentrations than nearby sites, there was no clear correlation between traffic conditions (vehicle speed, fleet mix) and the high PM2.5 concentrations.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Particulate Matter/analysis , Colorado , Indiana , Seasons
5.
Sensors (Basel) ; 17(8)2017 Aug 05.
Article in English | MEDLINE | ID: mdl-28783065

ABSTRACT

The use of low-cost air quality sensors has proliferated among non-profits and citizen scientists, due to their portability, affordability, and ease of use. Researchers are examining the sensors for their potential use in a wide range of applications, including the examination of the spatial and temporal variability of particulate matter (PM). However, few studies have quantified the performance (e.g., accuracy, precision, and reliability) of the sensors under real-world conditions. This study examined the performance of two models of PM sensors, the AirBeam and the Alphasense Optical Particle Counter (OPC-N2), over a 12-week period in the Cuyama Valley of California, where PM concentrations are impacted by wind-blown dust events and regional transport. The sensor measurements were compared with observations from two well-characterized instruments: the GRIMM 11-R optical particle counter, and the Met One beta attenuation monitor (BAM). Both sensor models demonstrated a high degree of collocated precision (R² = 0.8-0.99), and a moderate degree of correlation against the reference instruments (R² = 0.6-0.76). Sensor measurements were influenced by the meteorological environment and the aerosol size distribution. Quantifying the performance of sensors in real-world conditions is a requisite step to ensuring that sensors will be used in ways commensurate with their data quality.

SELECTION OF CITATIONS
SEARCH DETAIL
...