Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119745, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719029

ABSTRACT

The dynamic interface between invading viral pathogens and programmed cell death (PCD) of the host is a finely regulated process. Host cellular demise at the end of the viral life cycle ensures the release of progeny virions to initiate new infection cycles. Rotavirus (RV), a diarrheagenic virus with double-stranded RNA genome, has been reported to trigger different types of PCD such as apoptosis and pyroptosis in a highly regulated way to successfully disseminate progeny virions. Recently our lab also showed that induction of MLKL-driven programmed necroptosis by RV. However, the host cellular machinery involved in RV-induced necroptosis and the upstream viral trigger responsible for it remained unaddressed. In the present study, the signalling upstream of MLKL-driven necroptosis has been delineated where the involvement of Receptor interacting serine/threonine kinase 3 (RIPK3) and 1 (RIPK1) from the host side and RV non-structural protein 4 (NSP4) as the viral trigger for necroptosis has been shown. Interestingly, RV-NSP4 was found to be an integral component of the necrosome complex by interacting with RIPK1, thereby bypassing the requirement of RIPK1 kinase activity. Subsequently, NSP4-driven elevated cytosolic Ca2+ concentration and Ca2+-binding to NSP4 lead further to RHIM domain-dependent RIPK1-RIPK3 interaction, RIPK3-dependent MLKL phosphorylation, and eventual necroptosis. Overall, this study presents the interplay between RV-NSP4 and the host cellular necrosome complex to induce necroptotic death of host cells.


Subject(s)
Necroptosis , Protein Kinases , Receptor-Interacting Protein Serine-Threonine Kinases , Rotavirus , Viral Nonstructural Proteins , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Humans , Protein Kinases/metabolism , Protein Kinases/genetics , Rotavirus/metabolism , Animals , Host-Pathogen Interactions , Toxins, Biological/metabolism
2.
Virus Res ; 339: 199261, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37923170

ABSTRACT

Rotavirus (RV) is the primary etiological agent of virus-associated gastroenteritis in infants, causing 200,000 childhood death annually. Despite the availability of vaccines, rotaviral diarrhea continues to be a severe issue in underdeveloped nations in Asia and Africa. The situation demands continual studies on host-rotavirus interactions to understand disease pathogenesis and develop effective antiviral therapeutics. Long non-coding RNAs (lncRNAs), which are a subset of non-coding RNAs of more than 200 nucleotides in length, are reported to play a regulatory function in numerous viral infections. Virus infection often alters the host transcriptome including lncRNA that are differentially expressed either to play an antiviral role or to be advantageous towards virus propagation. In the current study, qPCR array-based expression profiling of host lncRNAs was performed in rotavirus-infected HT-29 cells that identified the lncRNA SLC7A11-AS1 to be upregulated during RV infection. Knockdown of SLC7A11-AS1 conspicuously reduced RV titers implying its pro-viral significance. RV-induced SLC7A11-AS1 downregulates the gene SLC7A11/xCT that encodes the light chain subunit of the system XC- cystine-glutamate exchange transporter, leading to decrease in intracellular glutathione level and increase in lipid peroxidation, which are signature features of ferroptotic pathway. Ectopic expression of xCT also abrogated RV infection by reversing the virus optimized levels of intracellular GSH and lipid ROS levels. Cumulatively, the study reveals that RV infection triggers ferroptotic cell death via SLC7A11-AS1/xCT axis to facilitate its own propagation.


Subject(s)
Ferroptosis , RNA, Long Noncoding , Rotavirus Infections , Rotavirus , Child , Humans , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Antiviral Agents , Cell Line, Tumor , Cystine/metabolism , Ferroptosis/genetics , Glutamic Acid/metabolism , Glutathione/metabolism , RNA, Long Noncoding/genetics , Rotavirus/genetics , Rotavirus/metabolism , Rotavirus Infections/metabolism , Rotavirus Infections/virology
3.
Cell Signal ; 112: 110891, 2023 12.
Article in English | MEDLINE | ID: mdl-37722521

ABSTRACT

Among the ramified cellular responses elicited in response to pathogenic stimuli, upregulation and covalent conjugation of an Ubiquitin-like modifier ISG15 to lysine residues of target proteins (ISGylation) through sequential action of three enzymes E1 (Ube1L), E2 (Ube2L6) and E3 (Herc5) have emerged as an important regulatory facet governing innate immunity against numerous viral infections. In the present study, we investigated the interplay between host ISGylation system and Rotavirus (RV). We observed that RV infection upregulates the expression of free ISG15 but prevents protein ISGylation. Analysing the expression of ISGylation machinery components revealed that RV infection results in steady depletion of Ube1L protein with the progression of infection. Indeed, restoration of Ube1L expression caused induction in protein ISGylation during RV infection. Subsequent investigation revealed that ectopic expression of RV non-structural protein 5 (NSP5) fosters proteolytic ubiquitylation of Ube1L, thereby depleting it in an ubiquitin-proteasome-dependent manner. Moreover, pan-Cullin inhibition also abrogates proteolytic ubiquitylation and rescued depleted Ube1L in RV-NSP5 expressing cells, suggesting the involvement of host cellular Cullin RING Ligases (CRLs) in proteasomal degradation of Ube1L during RV-SA11 infection. Reciprocal co-immunoprecipitation analyses substantiated a molecular association between Ube1L and RV-NSP5 during infection scenario and also under ectopically overexpressed condition independent of intermediate RNA scaffold and RV-NSP5 hyperphosphorylation. Interestingly, clonal overexpression of Ube1L reduced expression of RV proteins and RV infectivity, which are restored in ISG15 silenced cells, suggesting that Ube1L is a crucial anti-viral host cellular determinant that inhibits RV infection by promoting the formation of ISG15 conjugates.


Subject(s)
Cytokines , Rotavirus , Cytokines/metabolism , Rotavirus/metabolism , Cullin Proteins , Ubiquitins/metabolism , Antiviral Agents
4.
J Am Chem Soc ; 145(9): 5155-5162, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36813757

ABSTRACT

Strong interactions between excitons and photons lead to the formation of exciton-polaritons, which possess completely different properties compared to their constituents. The polaritons are created by incorporating a material in an optical cavity where the electromagnetic field is tightly confined. Over the last few years, the relaxation of polaritonic states has been shown to enable a new kind of energy transfer event, which is efficient at length scales substantially larger than the typical Förster radius. However, the importance of such energy transfer depends on the ability of the short-lived polaritonic states to efficiently decay to molecular localized states that can perform a photochemical process, such as charge transfer or triplet states. Here, we investigate quantitatively the interaction between polaritons and triplet states of erythrosine B in the strong coupling regime. We analyze the experimental data, collected mainly employing angle-resolved reflectivity and excitation measurements, using a rate equation model. We show that the rate of intersystem crossing from the polariton to the triplet states depends on the energy alignment of the excited polaritonic states. Furthermore, it is demonstrated that the rate of intersystem crossing can be substantially enhanced in the strong coupling regime to the point where it approaches the rate of the radiative decay of the polariton. In light of the opportunities that transitions from polaritonic to molecular localized states offer within molecular photophysics/chemistry and organic electronics, we hope that the quantitative understanding of such interactions gained from this study will aid in the development of polariton-empowered devices.

5.
Front Microbiol ; 13: 951716, 2022.
Article in English | MEDLINE | ID: mdl-35983320

ABSTRACT

Rotavirus (RV) is the leading cause of acute gastroenteritis and watery diarrhea in children under 5 years accounting for high morbidity and mortality in countries with poor socioeconomic status. Although vaccination against RV has been implemented in more than 100 countries, the efficacy of vaccine has been challenged in low-income settings. The lack of any FDA-approved drug against RV is an additional concern regarding the treatment associated with rotavirus-induced infantile death. With the purpose for the discovery of anti-RV therapeutics, we assessed anti-rotaviral potential of quercetin, a well-characterized antioxidant flavonoid. In vitro study revealed that quercetin treatment resulted in diminished production of RV-SA11 (simian strain) viral particles in a concentration-dependent manner as estimated by the plaque assay. Consistent with this result, Western blot analysis also revealed reduced synthesis of viral protein in quercetin-treated RV-SA11-infected MA104 cells compared to vehicle (DMSO) treated controls. Not surprisingly, infection of other RV strains A5-13 (bovine strain) and Wa (Human strain) was also found to be abridged in the presence of quercetin compared to DMSO. The IC50 of quercetin against three RV strains ranges between 2.79 and 4.36 Mm, and S.I. index is greater than 45. Concurrent to the in vitro results, in vivo study in mice model also demonstrated reduced expression of viral proteins and viral titer in the small intestine of quercetin-treated infected mice compared to vehicle-treated infected mice. Furthermore, the result suggested anti-rotaviral activity of quercetin to be interferon-independent. Mechanistic study revealed that the antiviral action of quercetin is co-related with the inhibition of RV-induced early activation of NF-κB pathway. Overall, this study delineates the strong anti-RV potential of quercetin and also proposes it as future therapeutics against rotaviral diarrhea.

6.
Cell Signal ; 89: 110180, 2022 01.
Article in English | MEDLINE | ID: mdl-34718106

ABSTRACT

Nonsense-mediated mRNA decay (NMD), a cellular RNA quality system, has been shown to be an ancestral form of cellular antiviral response that can restrict viral infection by targeting viral RNA for degradation or other various mechanisms. In support to this hypothesis, emerging evidences unraveled that viruses have evolved numerous mechanisms to circumvent or modulate the NMD pathway to ensure unhindered replication within the host cell. In this study, we investigated the potential interplay between the cellular NMD pathway and rotavirus (RV). Our data suggested that rotavirus infection resulted in global inhibition of NMD pathway by downregulating the expression of UPF1 in a strain independent manner. UPF1 expression was found to be regulated at the post-transcriptional level by ubiquitin-proteasome mediated degradation pathway. Subsequent studies revealed rotaviral non-structural protein 5 (NSP5) associates with UPF1 and promotes its cullin-dependent proteasome mediated degradation. Furthermore, ectopic expression of UPF1 during RV infection resulted in reduced expression of viral proteins and viral RNAs leading to diminished production of infective rotavirus particles, suggesting the anti-rotaviral role of UPF1. Finally, the delayed degradation kinetics of transfected rotaviral RNA in UPF1 and UPF2 depleted cells and the association of UPF1 and UPF2 with viral RNAs suggested that NMD targets rotaviral RNAs for degradation. Collectively, the present study demonstrates the antiviral role of NMD pathway during rotavirus infection and also reveals the underlying mechanism by which rotavirus overwhelms NMD pathway to establish successful replication.


Subject(s)
Nonsense Mediated mRNA Decay , Rotavirus , Viral Nonstructural Proteins , Frameshift Mutation , Proteasome Endopeptidase Complex/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , Rotavirus/metabolism
7.
Virulence ; 12(1): 1022-1062, 2021 12.
Article in English | MEDLINE | ID: mdl-33818275

ABSTRACT

Viruses are intracellular pathogens and are dependent on host cellular resources to carry out their cycles of perpetuation. Obtaining an integrative view of host-virus interaction is of utmost importance to understand the complex and dynamic interplay between viral components and host machineries. Besides its obvious scholarly significance, a comprehensive host-virus interaction profile also provides a platform where from host determinants of pro-viral and antiviral importance can be identified and further be subjected to therapeutic intervention. Therefore, adjunct to conventional methods of prophylactic vaccination and virus-directed antivirals, this host-targeted antiviral approach holds promising therapeutic potential. In this review, we present a comprehensive landscape of host cellular reprogramming in response to infection with rotavirus (RV) which causes profuse watery diarrhea in neonates and infants. In addition, an emphasis is given on how host determinants are either usurped or subverted by RV in course of infection and how therapeutic manipulation of specific host factors can effectively modulate the RV life cycle.


Subject(s)
Rotavirus Infections , Rotavirus , Antiviral Agents , Diarrhea , Host Microbial Interactions , Humans
8.
J Chem Phys ; 154(7): 074707, 2021 Feb 21.
Article in English | MEDLINE | ID: mdl-33607898

ABSTRACT

Photonic devices stand to benefit from the development of chromophores with tunable, precisely controlled spontaneous emission lifetimes. Here, we demonstrate a method to continuously tune the radiative emission lifetimes of a class of chromophores by varying the density of electronic states involved in the emission process. In particular, we examined the peculiar composition-dependent electronic structure of copper doped CdZnSe quantum dots. It is shown that the nature and density of electronic states involved with the emission process is a function of copper inclusion level, providing a very direct handle for controlling the spontaneous lifetimes. The spontaneous emission lifetimes are estimated by examining the ratios of emission lifetimes to absolute quantum yields and also measured directly by ultrafast luminescence upconversion experiments. We find excellent agreement between these classes of experiments. This scheme enables us to tune spontaneous emission lifetimes by three orders of magnitude from ∼15 ns to over ∼7 µs, which is unprecedented in existing lumophores.

9.
Oxid Med Cell Longev ; 2020: 7289120, 2020.
Article in English | MEDLINE | ID: mdl-32322337

ABSTRACT

Eukaryotic cells adopt highly tuned stress response physiology under threats of exogenous stressors including viruses to maintain cellular homeostasis. Not surprisingly, avoidance of cellular stress response pathways is an essential facet of virus-induced obligatory host reprogramming to invoke a cellular environment conducive to viral perpetuation. Adaptive cellular responses to oxidative and electrophilic stress are usually taken care of by an antioxidant defense system, core to which lies the redox-responsive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2-driven transcriptional cascade. Deregulation of host redox balance and redox stress-sensitive Nrf2 antioxidant defense have been reported for many viruses. In the current study, we aimed to study the modulation of the Nrf2-based host cellular redox defense system in response to Rotavirus (RV) infection in vitro. Interestingly, we found that Nrf2 protein levels decline sharply with progression of RV infection beyond an initial upsurge. Moreover, Nrf2 decrease as a whole was found to be accompanied by active nuclear vacuity of Nrf2, resulting in lowered expression of stress-responsive Nrf2 target genes heme oxygenase-1 (HO-1), NAD(P)H quinone dehydrogenase 1, and superoxide dismutase 1 both in the presence and absence of Nrf2-driven transcriptional inducers. Initial induction of Nrf2 concurred with RV-induced early burst of oxidative stress and therefore was sensitive to treatments with antioxidants. Reduction of Nrf2 levels beyond initial hours, however, was found to be independent of the cellular redox status. Furthermore, increasing the half-life of Nrf2 through inhibition of the Kelch-like erythroid cell-derived protein with CNC homology- (ECH-) associated protein 1/Cullin3-RING Box1-based canonical Nrf2 turnover pathway could not restore Nrf2 levels post RV-SA11 infection. Depletion of the Nrf2/HO-1 axis was subsequently found to be sensitive to proteasome inhibition with concurrent observation of increased K48-linked ubiquitination associated with Nrf2. Together, the present study describes robust downregulation of Nrf2-dependent cellular redox defense beyond initial hours of RV infection, justifying our previous observation of potent antirotaviral implications of Nrf2 agonists.


Subject(s)
NF-E2-Related Factor 2/metabolism , Rotavirus Infections/metabolism , Animals , Caco-2 Cells , Cell Culture Techniques , Cell Line, Tumor , Down-Regulation , HT29 Cells , Haplorhini , Humans , NF-E2-Related Factor 2/genetics , Oxidation-Reduction , Rotavirus Infections/genetics , Transfection
10.
Cell Microbiol ; 22(3): e13149, 2020 03.
Article in English | MEDLINE | ID: mdl-31845505

ABSTRACT

Surveillance for maintaining genomic pristineness, a protective safeguard of great onco-preventive significance, has been dedicated in eukaryotic cells to a highly conserved and synchronised signalling cascade called DNA damage response (DDR). Not surprisingly, foreign genetic elements like those of viruses are often potential targets of DDR. Viruses have evolved novel ways to subvert this genome vigilance by twisting canonical DDR to a skewed, noncanonical response through selective hijacking of some DDR components while antagonising the others. Though reported for many DNA and a few RNA viruses, potential implications of DDR have not been addressed yet in case of infection with rotavirus (RV), a double-stranded RNA virus. In the present study, we aimed at the modulation of ataxia telangiectasia mutated (ATM)-checkpoint kinase 2 (Chk2) branch of DDR in response to RV infection in vitro. We found activation of the transducer kinase ATM and its downstream effector Chk2 in RV-SA11-infected cells, the activation response being maximal at 6-hr post infection. Moreover, ATM activation was found to be dependent on induction of the upstream sensor Mre11-Rad50-Nbs1 (MRN) complex. Interestingly, RV-SA11-mediated maximal induction of ATM-Chk2 pathway was revealed to be neither preceded by occurrence of nuclear DNA damage nor transduced to formation of damage-induced canonical nuclear foci. Subsequent investigations affirmed sequestration of MRN components as well as ATM-Chk2 proteins away from nucleus into cytosolic RV replication factories (viroplasms). Chemical intervention targeting ATM and Chk2 significantly inhibited fusion and maturation of viroplasms leading to attenuated viral propagation. Cumulatively, the current study describes RV-mediated activation of a noncanonical ATM-Chk2 branch of DDR skewed in favour of facilitated viroplasm fusion and productive viral perpetuation.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Checkpoint Kinase 2/metabolism , DNA Damage , Rotavirus Infections/metabolism , Rotavirus/physiology , Viral Replication Compartments/metabolism , Acid Anhydride Hydrolases/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line , Checkpoint Kinase 2/genetics , DNA-Binding Proteins/metabolism , HT29 Cells , Host Microbial Interactions , Humans , MRE11 Homologue Protein/metabolism , Nuclear Proteins/metabolism , Rotavirus Infections/genetics , Rotavirus Infections/virology , Signal Transduction
11.
Nanotechnology ; 31(5): 055401, 2020 Jan 24.
Article in English | MEDLINE | ID: mdl-31627208

ABSTRACT

We describe optical switching in solutions of semiconductor nanocrystals illuminated by a 404 nm continuous wave laser source, driven by the formation of a micro-bubble of solvent vapor in the solution. Low boiling solvents such as hexane show an oscillatory modulation of transmitted light intensity (period ∼4 s) while solvents with intermediate boiling points such as toluene give a stable switching response. An on/off ratio of 83% is observed in the transmitted pump beam. Using this, a pump beam (404 nm, 80 mW continuous wave) was shown to reversibly switch the state of a probe laser (630 nm, 5 mW continuous wave). This switch thus serves as an optical analog of an electronic transistor and demonstrates the potential for all optical switching of low power light beams. Further, all optical universal logic gates, NAND and NOR, were also demonstrated using the micro-bubble switch.

12.
Sci Rep ; 9(1): 1318, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718795

ABSTRACT

Rotavirus (RV), the major etiological agent of viral gastroenteritis in young children, kills over 200 thousand infants each year. In spite of available vaccines, rotaviral diarrhoea is still a major problem in developing countries of Asia and Africa. Therefore, the studies on RV infection and host antiviral responses are warranted. The active correlation between virus infection and activation of autophagy machinery and positive influence of autophagy on RV replication have been documented recently. Previous study from our group showed dysregulation of several cellular miRNAs during RV infection, though their significance remained largely unknown. Since cellular microRNAs (miRNAs) have been implicated in the control of several fundamental biological processes including stress response and autophagy, we focused on two miRNAs, miR-99b and let-7g, and analyzed their function to gain insight into the miRNA-autophagy crosstalk during RV infection. This study shows that RV suppresses let-7g expression but enhances miR-99b that in turn augment major autophagy regulators. Ectopic expression of let-7g and knockdown of miR-99b resulted in inhibition of autophagy, hence, reduction of RV replication. Overall, our study highlights new mechanistic insights for understanding the role of miRNAs in modulating RV infection and possibility of using RNA interference as an antiviral therapeutic target.


Subject(s)
Autophagy/genetics , Host-Pathogen Interactions/genetics , MicroRNAs/genetics , Rotavirus Infections/genetics , Rotavirus Infections/virology , Rotavirus/physiology , Animals , Gene Expression Regulation , Genes, Reporter , Humans , Models, Biological , RNA Interference , Virus Replication
13.
Antiviral Res ; 161: 53-62, 2019 01.
Article in English | MEDLINE | ID: mdl-30465784

ABSTRACT

Acute watery diarrhea due to Rotavirus (RV) infection is associated with high infantile morbidity and mortality in countries with compromised socio-economic backgrounds. Although showing promising trends in developed countries, the efficacy of currently licensed RV vaccines is sub-optimal in socio-economically poor settings with high disease burden. Currently, there are no approved anti-rotaviral drugs adjunct to classical vaccination program. Interestingly, dissecting host-rotavirus interaction has yielded novel, non-mutable host determinants which can be subjected to interventions by selective small molecules. The present study was undertaken to evaluate the anti-RV potential of RA-839, a recently discovered small molecule with potent and highly selective agonistic activity towards cellular redox stress-sensitive Nuclear factor erytheroid-derived-2-like 2 (Nrf2)/Antioxidant Response Element (ARE) pathway. In vitro studies revealed that RA-839 inhibits RV RNA and protein expression, viroplasm formation, yield of virion progeny and virus-induced cytopathy independent of RV strains, RV-permissive cell lines and without bystander cytotoxicity. Anti-RV potency of RA-839 was subsequently identified to be independent of stochastic Interferon (IFN) stimulation but to be dependent on RA-839's ability to stimulate Nrf2/ARE signaling. Interestingly, anti-rotaviral effects of RA-839 were also mimicked by 2-Cyano-3, 12-dioxo-oleana-1, 9(11)-dien-28-oic acid methyl ester (CDDO-Me) and Hemin, two classical pharmacological activators of Nrf2/ARE pathway. Overall, this study highlights that RA-839 is a potent antagonist of RV propagation in vitro and can be developed as anti-rotaviral therapeutics.


Subject(s)
Antiviral Agents/pharmacology , NF-E2-Related Factor 2/antagonists & inhibitors , Rotavirus/drug effects , Signal Transduction/drug effects , Vesicular Transport Proteins/antagonists & inhibitors , Animals , Cell Line , Hemin/pharmacology , Humans , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology
14.
Cell Microbiol ; 20(6): e12831, 2018 06.
Article in English | MEDLINE | ID: mdl-29444369

ABSTRACT

Dynamic equilibrium between mitochondrial fission and mitochondrial fusion serves as an important quality control system within cells ensuring cellular vitality and homeostasis. Viruses often target mitochondrial dynamics as a part of their obligatory cellular reprogramming. The present study was undertaken to assess the status and regulation of mitochondrial dynamics during rotavirus infection. Distinct fragmentation of mitochondrial syncytia was observed during late hours of RV (SA11, Wa, A5-13) infection. RV nonstructural protein 4 (NSP4) was identified as the viral trigger for disrupted mitochondrial morphology. Severance of mitochondrial interconnections was found to be a dynamin-related protein 1 (Drp1)-dependent process resulting synergistically from augmented mitochondrial fission and attenuated mitochondrial fusion. Cyclin-dependent kinase 1 was subsequently identified as the cellular kinase responsible for fission-active Ser616 phosphorylation of Drp1. In addition to its positive role in mitochondrial fission, Drp1 also resulted in mitochondrial translocation of E3-ubiquitin ligase Parkin leading to degradation of mitochondrial fusion protein Mitofusin 1. Interestingly, RV-NSP4 was found to interact with and be involved in recruiting fission-active pool of Serine 616 phosphoDrp1 (Ser616 pDrp1) to mitochondria independent of accessory adaptors Mitochondrial fission factor and Fission protein 1 (Fis1). Inhibition of either Drp1 or Ser616 pDrp1 resulted in significant decrease in RV-NSP4-induced intrinsic apoptotic pathway. Overall, this study underscores an efficient strategy utilised by RV to couple apoptosis to mitochondrial fission facilitating dissemination of viral progeny.


Subject(s)
GTP Phosphohydrolases/metabolism , Glycoproteins/metabolism , Host-Pathogen Interactions , Microtubule-Associated Proteins/metabolism , Mitochondria/pathology , Mitochondrial Proteins/metabolism , Rotavirus/pathogenicity , Toxins, Biological/metabolism , Viral Nonstructural Proteins/metabolism , Animals , Apoptosis , CDC2 Protein Kinase/metabolism , Cell Line , Dynamins , Haplorhini , Humans , Mitochondrial Membrane Transport Proteins/metabolism , Phosphorylation , Protein Processing, Post-Translational , Proteolysis , Ubiquitin-Protein Ligases/metabolism
15.
Cell Microbiol ; 19(3)2017 03.
Article in English | MEDLINE | ID: mdl-27665089

ABSTRACT

Phosphoproteomics-based platforms have been widely used to identify post translational dynamics of cellular proteins in response to viral infection. The present study was undertaken to assess differential tyrosine phosphorylation during early hours of rotavirus (RV) SA11 infection. Heat shock proteins (Hsp60) were found to be enriched in the data set of RV-SA11 induced differentially tyrosine-phosphorylated proteins at 2 hr post infection (hpi). Hsp60 was further found to be phosphorylated by an activated form of Src kinase on 227th tyrosine residue, and tyrosine phosphorylation of mitochondrial chaperonin Hsp60 correlated with its proteasomal degradation at 2-2.5hpi. Interestingly, mitochondrial Hsp60 positively influenced translocation of the rotaviral nonstructural protein 4 to mitochondria during RV infections. Phosphorylation and subsequent transient degradation of mitochondrial Hsp60 during early hours of RV-SA11 infection resulted in inhibition of premature import of nonstructural protein 4 into mitochondria, thereby delaying early apoptosis. Overall, the study highlighted one of the many strategies rotavirus undertakes to prevent early apoptosis and subsequent reduced viral progeny yield.


Subject(s)
Apoptosis , Chaperonin 60/metabolism , Glycoproteins/metabolism , Protein Processing, Post-Translational , Rotavirus/pathogenicity , Signal Transduction , Toxins, Biological/metabolism , Tyrosine/metabolism , Viral Nonstructural Proteins/metabolism , Cell Line , Host-Pathogen Interactions , Humans , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Time Factors
16.
Virus Res ; 210: 344-54, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26386333

ABSTRACT

Cytoplasmic Processing bodies (P bodies), the RNA-protein aggregation foci of translationally stalled and potentially decaying mRNA, have been reported to be differentially modulated by viruses. Rotavirus, the causative agent of acute infantile gastroenteritis is a double stranded RNA virus which completes its entire life-cycle exclusively in host cell cytoplasm. In this study, the fate of P bodies was investigated upon rotavirus infection. It was found that P bodies get disrupted during rotavirus infection. The disruption occurred by more than one different mechanism where deadenylating P body component Pan3 was degraded by rotavirus NSP1 and exonuclease XRN1 along with the decapping enzyme hDCP1a were relocalized from cytoplasm to nucleus. Overall the study highlights decay and subcellular relocalization of P body components as novel mechanisms by which rotavirus subverts cellular antiviral responses.


Subject(s)
Cytoplasm/virology , Host-Pathogen Interactions , Macromolecular Substances/metabolism , Rotavirus/physiology , Virus Replication , Animals , Cell Line , Haplorhini , Nucleoproteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...