Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
3 Biotech ; 14(3): 90, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38414829

ABSTRACT

Rice production faces a significant threat from the rice leaffolder, Cnaphalocrocis medinalis. To address this challenge, growing resistant varieties stands out as a sustainable and eco-friendly pest management strategy. This necessitates identifying resistant sources and understanding their inheritance patterns through employing DNA markers for marker-assisted resistance breeding. Our study involves screening for resistant cultivars following the SES of IRRI, assessing genetic diversity among landraces using molecular markers, and identifying genomic regions associated with resistance. Screening indicated that 33.33%, 27.08%, 19.79%, and 19.80% of genotypes were resistant, moderately resistant, susceptible, and admixture, respectively. Landraces were categorized into three clusters, with clusters I and II predominantly containing moderately resistant and resistant cultivars, and cluster III mainly susceptible types. Molecular variance analysis revealed 12% variation among populations and 88% within the population. Simple linear regression identified significant marker-trait associations, with markers RM 162 and RM 284 on chromosomes 6 and 8, respectively, found highly associated with leaffolder resistance. Phenotypic variation in leaffolder damage correlated highly with the allelic effects of these markers. Further confirmation of marker linkage with resistance loci was established through independent assays on highly resistant and susceptible genotypes. The information derived from genetic diversity and marker-trait associations will be useful for future marker-assisted resistance breeding programs, enhancing the sustainability of rice production.

2.
Plant Sci ; 334: 111769, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37328072

ABSTRACT

Rice is an important grain crop of Asian population. Different fungal, bacterial and viral pathogens cause large reduction in rice grain production. Use of chemical pesticides, to provide protection against pathogens, has become incomplete due to pathogens resistance and is cause of environmental concerns. Therefore, induction of resistance in rice against pathogens via biopriming and chemopriming with safe and novel agents has emerged on a global level as ecofriendly alternatives that provide protection against broad spectrum of rice pathogens without any significant yield penalty. In the past three decades, a number of chemicals such as silicon, salicylic acid, vitamins, plant extract, phytohormones, nutrients etc. have been used to induce defense against bacterial, fungal and viral rice pathogens. From the detailed analysis of abiotic agents used, it has been observed that silicon and salicylic acid are two potential chemicals for inducing resistance against fungal and bacterial diseases in rice, respectively. However, an inclusive evaluation of the potential of different abiotic agents to induce resistance against rice pathogens is lacking due to which the studies on induction of defense against rice pathogens via chemopriming has become disproportionate and discontinuous. The present review deals with a comprehensive analysis of different abiotic agents used to induce defense against rice pathogens, their mode of application, mechanism of defense induction and the effect of defense induction on grain yield. It also provides an account of unexplored areas, which might be taken into attention to efficiently manage rice diseases. DATA AVAILABILITY STATEMENT: Data sharing not applicable to this article as no datasets were generated or analysed during the current study.


Subject(s)
Moths , Oryza , Animals , Disease Resistance , Oryza/microbiology , Silicon , Salicylic Acid , Plant Diseases/prevention & control , Plant Diseases/microbiology
3.
Plants (Basel) ; 12(6)2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36987051

ABSTRACT

Bacterial blight (BB) is a devastating disease of rice in the tropics of Indian sub-continent, where the presence of Xoo races with varying levels of genetic diversity and virulence renders disease management extremely challenging. In this context, marker-assisted improvement of plant resistance has been proven as one of the most promising approaches for the development of sustainable rice cultivars. The present study demonstrates the marker-assisted introgression of the three BB resistant genes (Xa21 + xa13 + xa5) into the background of HUR 917, a popular aromatic short grain (ASG) rice cultivar in India. The performance of the resulting improved products (near isogenic lines (NILs), HR 23-5-37-83-5, HR 23-5-37-121-10, HR 23-5-37-121-14, HR 23-65-6-191-13, HR 23-65-6-237-2, HR 23-65-6-258-10 and HR 23-65-6-258-21) establishes the utility of marker-assisted selection (MAS) approach for accelerated trait introgression in rice. The MAS-bred lines carrying three introgressed genes showed broad spectrum BB resistance (lesion length, LL of 1.06 ± 1.35 cm to 4.61 ± 0.87 cm). Besides, these improved lines showed the complete product profile of recurrent parent HUR 917 along with the enhanced level of durable BB resistance. The improved introgression lines with durable BB resistance would contribute to sustainable rice production in India, particularly in the Indo-Gangetic plane that has substantial acreage under HUR 917.

4.
Biomolecules ; 13(2)2023 01 18.
Article in English | MEDLINE | ID: mdl-36830568

ABSTRACT

Ranidhan is a popular late-maturing rice variety of Odisha state, India. The farmers of the state suffer heavy loss in years with flash floods as the variety is sensitive to submergence. Bacterial blight (BB) disease is a major yield-limiting factor, and the variety is susceptible to the disease. BB resistance genes Xa21, xa13, and xa5, along with the Sub1 QTL, for submergence stress tolerance were transferred into the variety using marker-assisted backcross breeding approach. Foreground selection using direct and closely linked markers detected the progenies carrying all four target genes in the BC1F1, BC2F1, and BC3F1 generations, and the positive progenies carrying these genes with maximum similarity to the recipient parent, Ranidhan, were backcrossed into each segregating generation. Foreground selection in the BC1F1 generation progenies detected all target genes in 11 progenies. The progeny carrying all target genes and similar to the recipient parent in terms of phenotype was backcrossed, and a total of 321 BC2F1 seeds were produced. Ten progenies carried all target genes/QTL in the BC2F1 generation. Screening of the BC3F1 progenies using markers detected 12 plants carrying the target genes. A total of 1270 BC3F2 seeds were obtained from the best BC3F1 progeny. Foreground selection in the BC3F2 progenies detected four plants carrying the target genes in the homozygous condition. The bioassay of the pyramided lines conferred very high levels of resistance to the predominant isolates of bacterial blight pathogen. These BB pyramided lines were submergence-tolerant and similar to Ranidhan in 13 agro-morphologic and grain quality traits; hence, they are likely to be adopted by farmers.


Subject(s)
Bacterial Infections , Oryza , Genetic Markers , Oryza/genetics , Disease Resistance/genetics , DNA Shuffling , Plant Breeding
5.
Planta ; 255(6): 113, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35503188

ABSTRACT

MAIN CONCLUSION: Rice is attacked by an armada of pathogens. Present review provides a critical evaluation of the potential of different biotic agents used to protect rice yield drop from pathogenicity and an account of unexplored areas, which might be taken into consideration to manage rice diseases. Rice (Oryza sativa L.), is the most important staple food of Asian countries. Rice production is significantly limited by a diversity of pathogens, leading to yield loss and deficit in current rice supply. Application of agrochemicals of diverse types has been considered as the only option to control pathogens and enhance rice production, thereby causing environmental concerns and making the pathogens resistant to the active ingredients. Increase in population and resistance of pathogen towards agrochemicals put pressure on the agronomists to search for safe, novel, eco-friendly alternative ways to manage rice pathogens. Inducing resistance in rice by using different biotic/abiotic agents provides an environmental friendly alternative way to effectively manage bacterial, fungal, and viral rice pathogens. In recent years, a number of protocols have been developed for inducing pathogen resistance by bio-priming of rice. However, a comprehensive evaluation of the potential of different biotic agents to protect rice crop loss from pathogens is hitherto lacking due to which the research on induction of defense against pathogens in rice is discontinuous. This review deals with the detailed analysis of the bacterial and fungal agents used to induce defense against rice pathogens, their mode of application, mechanism (physiological, biochemical, and molecular) of defense induction, and effect of defense induction on the yield of rice. It also provides an account of gaps in the research and the unexplored areas, which might be taken into consideration to effectively manage rice pathogens.


Subject(s)
Oryza , Agrochemicals , Asia , Disease Resistance , Oryza/microbiology , Plant Diseases/microbiology
6.
Front Plant Sci ; 12: 672618, 2021.
Article in English | MEDLINE | ID: mdl-34386025

ABSTRACT

The rice variety 'Swarna' is highly popular in the eastern region of India. The farmers of eastern India cultivate mainly rainfed rice and face the adverse effects of climate change very frequently. Rice production in this region is not stable. Swarna variety is highly susceptible to bacterial blight (BB) disease and flash floods, which cause a heavy reduction in the yield. Transfer of five target genes/QTLs was targeted into the variety, Swarna by adopting marker-assisted backcross breeding approach. Direct markers for Sub1A, OsSPL14, and SCM2 QTLs and closely linked markers for xa5 and Xa21 BB resistance genes were screened in the backcross progenies. Swarna-Sub1, CR Dhan 800, and Swarna-Habataki near-isogenic lines (NILs) were used as donor parents in the breeding program. True multiple F1 plants were identified for backcrossing, and 796 BC1F1 seeds were generated. Foreground selection detected all the five target genes in six progenies in BC1F1 generation. The progeny containing all the target genes and more similar with the recipient parent was backcrossed, and a total of 446 BC2F1 seeds were produced. Foreground screening detected four BC2F1 plants carrying the five target genes. A total of 2,145 BC2F2 seeds were obtained from the best BC2F1 progeny. Screening of the progenies resulted in one plant with all five desirable genes, three plants with four, and another three progenies carrying three genes in homozygous conditions. The pyramided lines showed higher BB resistance and submergence tolerance than the recipient parent, Swarna. Culm strength of the pyramided lines showed higher breaking force than the recipient parent, Swarna. The pyramided line, SSBY-16-68-69 yielded the highest grain yield of 7.52 t/ha followed by the lines SSBY-16-68-511 (7.34 t/ha) and SSBY-16-68-1633 (7.02 t/ha). The best-pyramided line showed a yield advantage of 18% over the recipient parent and 6.8% over the yield component donor parent. Seven pyramided lines showed higher yield than the recipient parent, while five lines were better yielders than the yield component donor parent. The pyramided line SSBY-16-68-69 produced 365 grains/panicle, while the recipient had 152. The main morphologic and grain quality features of the recipient parent were retained in the pyramided lines.

7.
Environ Sci Pollut Res Int ; 28(4): 4452-4462, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32944855

ABSTRACT

Green synthesis of silver nano-particles (AgNPs) from silver nitrate was carried out using purple-colored rice leaves' extracts containing higher phenols, anthocyanins, and flavonoids. The efficacy of synthesized AgNPs was tested against rice diseases and investigation was carried out to check negative effect of AgNPs on soil microbes. Substantial reduction of total anthocyanins, total phenols, and total flavonoids was observed in reaction mixture during AgNP formation indicating the role of secondary metabolites on AgNP formation and stabilization. Scanning electron microscopy coupled with energy-dispersive spectroscopic images and FTIR spectral analysis of AgNPs confirmed the presence of elemental silver encapped by biomolecules. The optimized reaction parameters for synthesis of AgNPs from silver nitrate were (a) 48 h of incubation, (b) 9:1 (v/v) 1 mM AgNO3:plant extract, and (c) room temperature at 20-30 °C. Zeta potential and hydrodynamic particle sizes of synthesized AgNPs were ranged between - 16.61 to - 29.45 mV and 36-107 nm, respectively, at different time of incubation. AgNPs could control effectively Rhizoctonia solani and Xanthomonas oryzae pv. Oryzae and Helminthosporium oryzae. AgNPs at higher concentration could cause negative effect on microbial biomass carbon and soil enzymes for distant future. But the negative effects of AgNP solution (10% of 1 mM AgNPs) were comparable to commercial fungicide, carbendazim. The synthesized AgNPs with desirable characters were effective against a number of disease-causing pathogens in rice, and it can be recommended as broad-spectrum pesticide.


Subject(s)
Metal Nanoparticles , Oryza , Anti-Bacterial Agents , Bipolaris , Green Chemistry Technology , Plant Extracts , Plant Leaves , Rhizoctonia , Xanthomonas
8.
Environ Monit Assess ; 191(11): 654, 2019 Oct 19.
Article in English | MEDLINE | ID: mdl-31628546

ABSTRACT

Plant species, viz Cleistanthus collinus, Lantana camara, and Strychnos nux-vomica are being traditionally used for pest management in rice. However, limited investigation has been carried out to understand the toxic effect of these materials on soil microbes. Hot water extracts of these plants were evaluated for their effects on soil microbial population and enzyme activities along with neem oil and chlorpyrifos as check. Soil microbial population, viz bacteria, fungi, phosphate-solubilizing bacteria (PSB), and asymbiotic nitrogen fixers were unchanged after application of plant extracts. Maximum population of bacteria including PSB and asymbiotic nitrogen fixers were observed in control, whereas, S. nux-vomica, and C. collinus-treated soil had higher number of actinomycetes and fungal population, respectively. Soil microbial biomass did not vary differently among the plant extracts. Application of plant extracts did not alter dehydrogenase, ß-glycosidase, acid phosphatase, alkaline phosphatase, and urease content in soil. Secondary metabolites present in these plant extracts may be responsible for variable effects on soil microbes. Chlorpyrifos had a fleeting negative effect on soil microbes and enzymes in comparison to plant extracts. All the three plants did not have any negative effect on soil microbes and enzymes and can be safely recommended in rice pest management.


Subject(s)
Biological Control Agents/toxicity , Environmental Monitoring/methods , Oryza/growth & development , Soil Microbiology/standards , Soil Pollutants/toxicity , Soil/chemistry , Bacteria/drug effects , Biological Control Agents/analysis , Biomass , Ecosystem , Fungi/drug effects , Soil Pollutants/analysis
9.
Sci Rep ; 9(1): 12810, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31488854

ABSTRACT

Bacterial blight (BB) disease and submergence due to flash flood are the two major constraints for achieving higher yield from rainfed lowland rice. Marker-assisted backcross breeding was followed to develop submergence tolerant and durable BB resistant variety in the background of popular cultivar 'Swarna'. Four BB resistance genes viz., Xa4, xa5, xa13, Xa21 and Sub1 QTL for submergence tolerance were incorporated into the mega variety. Foreground selection for the five target genes was performed using closely linked markers and tracked in each backcross generations. Background selection in plants carrying the target genes was performed by using 100 simple sequence repeat markers. Amongst backcross derivatives, the plant carrying five target genes and maximum recurrent parent genome content was selected in each generation and hybridized with recipient parent. Eighteen BC3F2 plants were obtained by selfing the selected BC3F1 line. Amongst the pyramided lines, 3 lines were homozygous for all the target genes. Bioassay of the 18 pyramided lines containing BB resistance genes was conducted against different Xoo strains conferred very high levels of resistance to the predominant isolates. The pyramided lines also exhibited submergence tolerance for 14 days. The pyramided lines were similar to the recurrent parent in 14 morpho-quality traits.


Subject(s)
Oryza/microbiology , Oryza/physiology , Plant Breeding , Plant Diseases/genetics , Crosses, Genetic , Disease Resistance/genetics , Floods , Genetic Markers , Oryza/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , Selection, Genetic , Xanthomonas
10.
Funct Plant Biol ; 46(3): 248-261, 2019 02.
Article in English | MEDLINE | ID: mdl-32172768

ABSTRACT

Chlorophyll a fluorescence (ChlF) parameters measured with fluorescence imaging techniques were used to investigate the combined effect of salt and partial submergence stress to understand photosynthetic performance in rice (Oryza sativa L.). ChlF parameters such as maximal fluorescence (Fm), variable fluorescence (Fv=Fm -F0), the maximal photochemical efficiency of PSII (Fv/Fm) and the quantum yield of nonregulated energy dissipation of PSII (Y(NO)) were able to distinguish genotypes precisely based on their sensitivity to stress. Upon analysis, we found the images of F0 were indistinguishable among the genotypes, irrespective of their tolerance to salt and partial submergence stress. On the contrary, the images of Fm and Fv/Fm showed marked differences between the tolerant and susceptible genotypes in terms of tissue greenness and the appearance of dark spots as stress symptoms. The images of effective PSII quantum yield, the coefficient of nonphotochemical quenching (qN) and the coefficient of photochemical quenching (qP) captured under different PAR were able to distinguish the tolerant and susceptible genotypes, and were also quite effective for differentiating the tolerant and moderately tolerant ones. Similarly, the values of electron transport rate, qN, qP and Y(NO) were also able to distinguish the genotypes based on their sensitivity to stress. Overall, this investigation indicates the suitability of chlorophyll fluorescence imaging technique for precise phenotyping of rice based on their sensitivity to the combined effect of salt and partial submergence.


Subject(s)
Oryza , Chlorophyll , Chlorophyll A , Fluorescence , Genotype , Salinity
11.
Plant Pathol J ; 32(6): 580-583, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27904466

ABSTRACT

The cotton leafroll dwarf virus (CLRDV) is one of the most devastating pathogens of cotton. This malady, known as cotton blue disease, is widespread in South America where it causes huge crop losses. Recently the disease has been reported from India. We noticed occurrence of cotton blue disease and chickpea stunt disease in adjoining cotton and chickpea fields and got interested in knowing if these two viral diseases have some association. By genetic studies, we have shown here that CLRDV is very close to chickpea stunt disease associated virus (CpSDaV). We were successful in transmitting the CLRDV from cotton to chickpea. Our studies indicate that CpSDaV and CLRDV in India are possibly two different strains of the same virus. These findings would be helpful in managing these serious diseases by altering the cropping patterns.

12.
Phytopathology ; 106(7): 710-8, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26976728

ABSTRACT

Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae is a major disease of rice in many rice growing countries. Pyramided lines carrying two BB resistance gene combinations (Xa21+xa13 and Xa21+xa5) were developed in a lowland cultivar Jalmagna background through backcross breeding by integrating molecular markers. In each backcross generation, markers closely linked to the disease resistance genes were used to select plants possessing the target genes. Background selection was continued in those plants carrying resistant genes until BC(3) generation. Plants having the maximum contribution from the recurrent parent genome were selected in each generation and hybridized with the recipient parent. The BB-pyramided line having the maximum recipient parent genome recovery of 95% was selected among BC3F1 plants and selfed to isolate homozygous BC(3)F(2) plants with different combinations of BB resistance genes. Twenty pyramided lines with two resistance gene combinations exhibited high levels of tolerance against the BB pathogen. In order to confirm the resistance, the pyramided lines were inoculated with different X. oryzae pv. oryzae strains of Odisha for bioassay. The genotypes with combination of two BB resistance genes conferred high levels of resistance to the predominant X. oryzae pv. oryzae isolates prevalent in the region. The pyramided lines showed similarity with the recipient parent with respect to major agro-morphologic traits.


Subject(s)
Host-Pathogen Interactions/genetics , Oryza/physiology , Plant Breeding/methods , Plant Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Xanthomonas/physiology , Genome, Plant , Oryza/microbiology , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Immunity/genetics
13.
Z Naturforsch C J Biosci ; 61(7-8): 583-91, 2006.
Article in English | MEDLINE | ID: mdl-16989321

ABSTRACT

Thirty-one species of Mammillaria were selected to study the molecular phylogeny using random amplified polymorphic DNA (RAPD) markers. High amount of mucilage (gelling polysaccharides) present in Mammillaria was a major obstacle in isolating good quality genomic DNA. The CTAB (cetyl trimethyl ammonium bromide) method was modified to obtain good quality genomic DNA. Twenty-two random decamer primers resulted in 621 bands, all of which were polymorphic. The similarity matrix value varied from 0.109 to 0.622 indicating wide variability among the studied species. The dendrogram obtained from the unweighted pair group method using arithmetic averages (UPGMA) analysis revealed that some of the species did not follow the conventional classification. The present work shows the usefulness of RAPD markers for genetic characterization to establish phylogenetic relations among Mammillaria species.


Subject(s)
Cactaceae/genetics , Random Amplified Polymorphic DNA Technique/methods , Cactaceae/classification , DNA Primers , DNA, Plant/genetics , DNA, Plant/isolation & purification , Genome, Plant , Phylogeny
14.
Z Naturforsch C J Biosci ; 61(5-6): 413-20, 2006.
Article in English | MEDLINE | ID: mdl-16869501

ABSTRACT

Random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) markers were used to assess the genetic diversity in 31 species of mangroves and mangrove associates. Four AFLP primer combinations resulted in the amplification of 840 bands with an average of 210 bands per primer combination and 11 RAPD primers yielded 319 bands with an average of 29 bands per primer. The percentage of polymorphism detected was too high indicating the high degree of genetic variability in mangrove taxa both at inter- and intra-generic levels. In the dendrogram, species belonging to a particular family/ genus, taxa inhabiting similar habitats or having similar adaptations tended to be together. There were exceptions too; as many unrelated species of mangroves form clusters. The intrafamilial classification and inter-relationships of genera in the family Rhizophoraceae could be confirmed by molecular analysis. Both the markers RAPD and AFLP were found equally informative and useful for a better understanding of the genetic variability and genome relationships among mangroves and their associated species.


Subject(s)
Genetic Variation , Magnoliopsida/classification , Magnoliopsida/genetics , Phylogeny , Polymorphism, Genetic , Base Sequence , DNA, Plant/genetics , DNA, Plant/isolation & purification , Genes, Plant , Genetic Markers , Random Amplified Polymorphic DNA Technique , Tropical Climate
15.
Z Naturforsch C J Biosci ; 60(7-8): 600-4, 2005.
Article in English | MEDLINE | ID: mdl-16163836

ABSTRACT

The interrelationship of five medicinally important species of Typhonium (Araceae) including T. venosum, which was previously placed under the genus Sauromatum, was inferred by analysis of random amplified polymorphic DNA (RAPD). DNA from pooled leaf samples was isolated and RAPD analysis was performed using 20 decamer oligonucleotide primers. Out of a total of 245 bands amplified, 12 were found to be monomorphic while 233 bands were polymorphic including 86 species-specific bands. The genetic similarities were analyzed from the dendrogram constructed by the pooled RAPD data using a similarity index. The dendrogram showed two distinct clades, one containing T. roxburghii, T. trilobatum and T. venosum and the other containing the remainder two species, i.e. T. diversifolium and T. flagelliforme. Both the clusters shared a common node approx. at 23.7% level of similarity. The maximum similarity of 31.2% was observed between T. venosum and T. trilobatum. In view of its close genetic similarity with other members of Typhonium, transfer of Sauromatum venosum to the genus Typhonium and merger of the two genera was supported.


Subject(s)
Araceae/chemistry , Plants, Medicinal/genetics , Random Amplified Polymorphic DNA Technique/methods , Araceae/classification , Araceae/genetics , Base Sequence , DNA Primers , DNA, Bacterial/genetics , DNA, Plant/genetics , DNA, Plant/isolation & purification , Genome, Plant , Phylogeny
16.
Z Naturforsch C J Biosci ; 59(7-8): 572-8, 2004.
Article in English | MEDLINE | ID: mdl-15813382

ABSTRACT

Random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) markers were used to study the genomic relationship among 11 members of Indian Rhizophoraceae represented by nine true mangroves and two non-mangrove species. The AFLP and RAPD bands were scored and analyzed for genetic similarities and cluster analysis was done which separated the 11 species studied into two main groups, the true mangroves and the non-mangroves. The polymorphism observed for these markers showed a high degree of genetic diversity among the constituent taxa of the family. The phylogenetic relationship inferred from molecular marker systems supported the traditional taxonomic classification of the family Rhizophoraceae based on morphological characters at the levels of tribe, phylogeny and delimitation of genera and species, except the intra-generic classification of the genus Bruguiera and the placement of Rhizophora in the family Rhizophoraceae.


Subject(s)
Genome, Plant , Rhizophoraceae/classification , Rhizophoraceae/genetics , Base Sequence , Cluster Analysis , DNA Primers , DNA, Plant/genetics , DNA, Plant/isolation & purification , India , Polymerase Chain Reaction , Polymorphism, Genetic
17.
Z Naturforsch C J Biosci ; 59(11-12): 868-73, 2004.
Article in English | MEDLINE | ID: mdl-15666548

ABSTRACT

Random amplified polymorphic DNA (RAPD) marker was used to establish intergeneric classification and phylogeny of the tribe Millettieae sensu Geesink (1984) (Leguminosae: Papilionoideae) and to assess genetic relationship between 9 constituent species belonging to 5 traditionally recognized genera under the tribe. DNA from pooled leaf samples was isolated and RAPD analysis performed using 25 decamer primers. The genetic similarities were derived from the dendrogram constructed by the pooled RAPD data using a similarity index, which supported clear grouping of species under their respective genera, inter- and intra-generic classification and phylogeny and also merger of Pongamia with Millettia. Elevation of Tephrosia purpurea var. pumila to the rank of a species (T. pumila) based on morphological characteristics is also supported through this study of molecular markers.


Subject(s)
Genome, Plant , Millettia/classification , Millettia/genetics , Random Amplified Polymorphic DNA Technique/methods , Base Sequence , DNA Primers , DNA, Plant/genetics , DNA, Plant/isolation & purification , Phylogeny , Seeds
SELECTION OF CITATIONS
SEARCH DETAIL
...