Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Science ; 383(6683): 629-633, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38330124

ABSTRACT

Heat transport can serve as a fingerprint identifying different states of matter. In a normal liquid, a hotspot diffuses, whereas in a superfluid, heat propagates as a wave called "second sound." Direct imaging of heat transport is challenging, and one usually resorts to detecting secondary effects. In this study, we establish thermography of a strongly interacting atomic Fermi gas, whose radio-frequency spectrum provides spatially resolved thermometry with subnanokelvin resolution. The superfluid phase transition was directly observed as the sudden change from thermal diffusion to second-sound propagation and is accompanied by a peak in the second-sound diffusivity. This method yields the full heat and density response of the strongly interacting Fermi gas and therefore all defining properties of Landau's two-fluid hydrodynamics.

2.
Soft Matter ; 18(42): 8117-8123, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36239136

ABSTRACT

We study the thermodynamics of binary mixtures with the volume fraction of the minority component less than the amount required to form a flat interface and show that the surface tension dominated equilibrium phase of the mixture forms a single macroscopic droplet. Elastic interactions in gel-polymer mixtures stabilize a phase with multiple droplets. Using a mean-field free energy we compute the droplet size as a function of the interfacial tension, Flory parameter, and elastic moduli of the gel. Our results illustrate the role of elastic interactions in dictating the phase behavior of biopolymers undergoing liquid-liquid phase separation.

3.
Macromolecules ; 55(10): 3886-3897, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35634035

ABSTRACT

We extend the Cahn-Landau-de Gennes mean field theory of wetting in binary mixtures to understand the wetting thermodynamics of a three phase system (e.g., polymer dispersed liquid crystals or polymer-colloid mixtures) that is in contact with an external surface, which prefers one of the phases. Using a model free-energy, which has three minima in its landscape, we show that as the central minimum becomes more stable compared to the remaining ones, the bulk phase diagram encounters a triple point and then bifurcates and we observe a novel non-monotonic dependence of the surface tension as a function of the stability of the central minimum. We show that this non-monotonicity in surface tension is associated with a complete to partial wetting transition. We obtain the complete wetting phase behavior as a function of phase stability and the surface interaction parameters when the system is close to the bulk triple point. The model free-energy that we use is qualitatively similar to that of a renormalized free energy, which arises in the context of polymer-liquid crystal mixtures. Finally, we study the thermodynamics of wetting for an explicit polymer-liquid crystal mixture and show that its thermodynamics is similar to that of our model free-energy.

4.
Nature ; 601(7891): 58-62, 2022 01.
Article in English | MEDLINE | ID: mdl-34987216

ABSTRACT

The dominance of interactions over kinetic energy lies at the heart of strongly correlated quantum matter, from fractional quantum Hall liquids1, to atoms in optical lattices2 and twisted bilayer graphene3. Crystalline phases often compete with correlated quantum liquids, and transitions between them occur when the energy cost of forming a density wave approaches zero. A prime example occurs for electrons in high-strength magnetic fields, where the instability of quantum Hall liquids towards a Wigner crystal4-9 is heralded by a roton-like softening of density modulations at the magnetic length7,10-12. Remarkably, interacting bosons in a gauge field are also expected to form analogous liquid and crystalline states13-21. However, combining interactions with strong synthetic magnetic fields has been a challenge for experiments on bosonic quantum gases18,21. Here we study the purely interaction-driven dynamics of a Landau gauge Bose-Einstein condensate22 in and near the lowest Landau level. We observe a spontaneous crystallization driven by condensation of magneto-rotons7,10, excitations visible as density modulations at the magnetic length. Increasing the cloud density smoothly connects this behaviour to a quantum version of the Kelvin-Helmholtz hydrodynamic instability, driven by the sheared internal flow profile of the rapidly rotating condensate. At long times the condensate self-organizes into a persistent array of droplets separated by vortex streets, which are stabilized by a balance of interactions and effective magnetic forces.

5.
Science ; 372(6548): 1318-1322, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34140384

ABSTRACT

The equivalence between particles under rotation and charged particles in a magnetic field relates phenomena as diverse as spinning atomic nuclei, weather patterns, and the quantum Hall effect. For such systems, quantum mechanics dictates that translations along different directions do not commute, implying a Heisenberg uncertainty relation between spatial coordinates. We implement squeezing of this geometric quantum uncertainty, resulting in a rotating Bose-Einstein condensate occupying a single Landau gauge wave function. We resolve the extent of zero-point cyclotron orbits and demonstrate geometric squeezing of the orbits' centers 7 decibels below the standard quantum limit. The condensate attains an angular momentum exceeding 1000 quanta per particle and an interatomic distance comparable to the cyclotron orbit. This offers an alternative route toward strongly correlated bosonic fluids.

6.
Science ; 370(6521): 1222-1226, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33273102

ABSTRACT

Transport of strongly interacting fermions is crucial for the properties of modern materials, nuclear fission, the merging of neutron stars, and the expansion of the early Universe. Here, we observe a universal quantum limit of diffusivity in a homogeneous, strongly interacting atomic Fermi gas by studying sound propagation and its attenuation through the coupled transport of momentum and heat. In the normal state, the sound diffusivity D monotonically decreases upon lowering the temperature, in contrast to the diverging behavior of weakly interacting Fermi liquids. Below the superfluid transition temperature, D attains a universal value set by the ratio of Planck's constant and the particle mass. Our findings inform theories of fermion transport, with relevance for hydrodynamic flow of electrons, neutrons, and quarks.

7.
Polymers (Basel) ; 12(7)2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32708547

ABSTRACT

Surface segregation of the low molecular weight component of a polymeric mixture is a ubiquitous phenomenon that leads to degradation of industrial formulations. We report a simultaneous phase separation and surface migration phenomena in oligomer-polymer ( O P ) and oligomer-gel ( O G ) systems following a temperature quench that induces demixing of components. We compute equilibrium and time varying migrant (oligomer) density profiles and wetting layer thickness in these systems using coarse grained molecular dynamics (CGMD) and mesoscale hydrodynamics (MH) simulations. Such multiscale methods quantitatively describe the phenomena over a wide range of length and time scales. We show that surface migration in gel-oligomer systems is significantly reduced on account of network elasticity. Furthermore, the phase separation processes are significantly slowed in gels leading to the modification of the well known Lifshitz-Slyozov-Wagner (LSW) law ℓ ( τ ) ∼ τ 1 / 3 . Our work allows for rational design of polymer/gel-oligomer mixtures with predictable surface segregation characteristics that can be compared against experiments.

8.
Phys Rev Lett ; 122(20): 203402, 2019 May 24.
Article in English | MEDLINE | ID: mdl-31172778

ABSTRACT

We measure radio frequency (rf) spectra of the homogeneous unitary Fermi gas at temperatures ranging from the Boltzmann regime through quantum degeneracy and across the superfluid transition. For all temperatures, a single spectral peak is observed. Its position smoothly evolves from the bare atomic resonance in the Boltzmann regime to a frequency corresponding to nearly one Fermi energy at the lowest temperatures. At high temperatures, the peak width reflects the scattering rate of the atoms, while at low temperatures, the width is set by the size of fermion pairs. Above the superfluid transition, and approaching the quantum critical regime, the width increases linearly with temperature, indicating non-Fermi-liquid behavior. From the wings of the rf spectra, we obtain the contact, quantifying the strength of short-range pair correlations. We find that the contact rapidly increases as the gas is cooled below the superfluid transition.

9.
Phys Rev Lett ; 122(9): 093401, 2019 Mar 08.
Article in English | MEDLINE | ID: mdl-30932518

ABSTRACT

We study the thermal evolution of a highly spin-imbalanced, homogeneous Fermi gas with unitarity limited interactions, from a Fermi liquid of polarons at low temperatures to a classical Boltzmann gas at high temperatures. Radio-frequency spectroscopy gives access to the energy, lifetime, and short-range correlations of Fermi polarons at low temperatures T. In this regime, we observe a characteristic T^{2} dependence of the spectral width, corresponding to the quasiparticle decay rate expected for a Fermi liquid. At high T, the spectral width decreases again towards the scattering rate of the classical, unitary Boltzmann gas, ∝T^{-1/2}. In the transition region between the quantum degenerate and classical regime, the spectral width attains its maximum, on the scale of the Fermi energy, indicating the breakdown of a quasiparticle description. Density measurements in a harmonic trap directly reveal the majority dressing cloud surrounding the minority spins and yield the compressibility along with the effective mass of Fermi polarons.

10.
J Chem Phys ; 148(19): 193839, 2018 May 21.
Article in English | MEDLINE | ID: mdl-30307176

ABSTRACT

Reorientational dynamics of the constituent ions in a room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), are explored via molecular dynamics simulations, and several features of orientation dynamics are summarized. The anion, [PF6]-, not only exhibits a higher propensity to orientation jumps than the cation, [BMIM]+ but also accesses a wider jump angle distribution and larger peak-angle. Jump and waiting time distributions for both the ions depict power-law dependences, suggesting temporally heterogeneous dynamics for the medium. This heterogeneity feature is further highlighted by the finding that the simulated first rank (ℓ = 1) and second rank (ℓ = 2) average reorientational correlation times reflect a severe break-down of Debye's ℓ(ℓ + 1) law for orientational diffusion in an isotropic homogeneous medium. Simulated average H-bond lifetime resides between the mean orientation jump and waiting times, while the structural H-bond relaxation suggests, as in normal liquids, a pronounced presence of translational motion of the partnering ions. Average simulated jump trajectories reveal a strong rotation-translation coupling and indicate relatively larger changes in spatial and angular arrangements for the anion during an orientation jump. In fact, a closer inspection of all these results points toward more heterogeneous dynamics for [PF6]- than [BMIM]+. This is a new observation and may simply be linked to the ion-size. However, such a generalization warrants further study.

11.
J Chem Phys ; 147(11): 114501, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28938812

ABSTRACT

Understanding the connections between the characteristic dynamical time scales associated with a coarse-grained (CG) and a detailed representation is central to the applicability of the coarse-graining methods to understand molecular processes. The process of coarse graining leads to an accelerated dynamics, owing to the smoothening of the underlying free-energy landscapes. Often a single time-mapping factor is used to relate the time scales associated with the two representations. We critically examine this idea using a model system ideally suited for this purpose. Single molecular transport properties are studied via molecular dynamics simulations of the CG and atomistic representations of a liquid crystalline, azobenzene containing mesogen, simulated in the smectic and the isotropic phases. The out-of-plane dynamics in the smectic phase occurs via molecular hops from one smectic layer to the next. Hopping can occur via two mechanisms, with and without significant reorientation. The out-of-plane transport can be understood as a superposition of two (one associated with each mode of transport) independent continuous time random walks for which a single time-mapping factor would be rather inadequate. A comparison of the free-energy surfaces, relevant to the out-of-plane transport, qualitatively supports the above observations. Thus, this work underlines the need for building CG models that exhibit both structural and dynamical consistency to the underlying atomistic model.

12.
Phys Rev Lett ; 118(12): 123401, 2017 Mar 24.
Article in English | MEDLINE | ID: mdl-28388181

ABSTRACT

We report on the creation of homogeneous Fermi gases of ultracold atoms in a uniform potential. In the momentum distribution of a spin-polarized gas, we observe the emergence of the Fermi surface and the saturated occupation of one particle per momentum state: the striking consequence of Pauli blocking in momentum space for a degenerate gas. Cooling a spin-balanced Fermi gas at unitarity, we create homogeneous superfluids and observe spatially uniform pair condensates. For thermodynamic measurements, we introduce a hybrid potential that is harmonic in one dimension and uniform in the other two. The spatially resolved compressibility reveals the superfluid transition in a spin-balanced Fermi gas, saturation in a fully polarized Fermi gas, and strong attraction in the polaronic regime of a partially polarized Fermi gas.

13.
J Chem Phys ; 145(16): 164501, 2016 Oct 28.
Article in English | MEDLINE | ID: mdl-27802662

ABSTRACT

A combined experimental (mid- and far-infrared FTIR spectroscopy and THz time domain spectroscopy (TTDS) (0.3-1.6 THz)) and molecular dynamics (MD) simulation technique are used to understand the evolution of the structure and dynamics of water in its binary mixture with 1,2-dimethoxy ethane (DME) over the entire concentration range. The cooperative hydrogen bond dynamics of water obtained from Debye relaxation of TTDS data reveals a non-monotonous behaviour in which the collective dynamics is much faster in the low Xw region (where Xw is the mole fraction of water in the mixture), whereas in Xw ∼ 0.8 region, the dynamics gets slower than that of pure water. The concentration dependence of the reorientation times of water, calculated from the MD simulations, also captures this non-monotonous character. The MD simulation trajectories reveal presence of large amplitude angular jumps, which dominate the orientational relaxation. We rationalize the non-monotonous, concentration dependent orientational dynamics by identifying two different physical mechanisms which operate at high and low water concentration regimes.

14.
J Chem Phys ; 145(8): 084504, 2016 Aug 28.
Article in English | MEDLINE | ID: mdl-27586932

ABSTRACT

The paper reports a detailed simulation study on collective reorientational relaxation, cooperative hydrogen bond (H-bond) fluctuations, and their connections to dielectric relaxation (DR) in deep eutectic solvents made of acetamide and three uni-univalent electrolytes, lithium nitrate (LiNO3), lithium bromide (LiBr), and lithium perchlorate (LiClO4). Because cooperative H-bond fluctuations and ion migration complicate the straightforward interpretation of measured DR timescales in terms of molecular dipolar rotations for these conducting media which support extensive intra- and inter-species H-bonding, one needs to separate out the individual components from the overall relaxation for examining the microscopic origin of various timescales. The present study does so and finds that reorientation of ion-complexed acetamide molecules generates relaxation timescales that are in sub-nanosecond to nanosecond range. This explains in molecular terms the nanosecond timescales reported by recent giga-Hertz DR measurements. Interestingly, the simulated survival timescale for the acetamide-Li(+) complex has been found to be a few tens of nanosecond, suggesting such a cation-complexed species may be responsible for a similar timescale reported by mega-Hertz DR measurements of acetamide/potassium thiocyanate deep eutectics near room temperature. The issue of collective versus single particle relaxation is discussed, and jump waiting time distributions are determined. Dependence on anion-identity in each of the cases has been examined. In short, the present study demonstrates that assumption of nano-sized domain formation is not required for explaining the DR detected nanosecond and longer timescales in these media.

15.
Phys Rev Lett ; 116(4): 045304, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26871342

ABSTRACT

We follow the time evolution of a superfluid Fermi gas of resonantly interacting ^{6}Li atoms after a phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, its subsequent snaking, and its decay into a vortex ring, which, in turn, breaks to finally leave behind a single solitonic vortex. In intermediate stages, we find evidence for an exotic structure resembling the Φ soliton, a combination of a vortex ring and a vortex line. Direct imaging of the nodal surface reveals its undulation dynamics and its decay via the puncture of the initial soliton plane. The observed evolution of the nodal surface represents dynamics beyond superfluid hydrodynamics, calling for a microscopic description of unitary fermionic superfluids out of equilibrium.

16.
J Chem Phys ; 143(5): 054503, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26254657

ABSTRACT

Liquid water is known to reorient via a combination of large angular jumps (due to exchange of hydrogen bonding (H-bond) partners) and diffusive orientations. Translation of the molecule undergoing the orientational jump and its initial and final H-bond acceptors plays a key role in the microscopic reorientation process. Here, we partition the translational dynamics into those occurring during intervals when rotating water molecules (and their initial and final H-bonding partners) undergo orientational jump and those arising when molecules wait between consecutive orientational jumps. These intervals are chosen in such a way that none of the four possible H-bonds involving the chosen water molecule undergo an exchange process within its duration. Translational dynamics is analysed in terms of the distribution of particle displacements, van Hove functions, and its moments. We observe that the translational dynamics, calculated from molecular dynamics simulations of liquid water, is fastest during the orientational jumps and slowest during periods of waiting. The translational dynamics during all temporal intervals shows an intermediate behaviour. This is the microscopic origin of temporal dynamic heterogeneity in liquid water, which is mild at 300 K and systematically increases with supercooling. Study of such partitioned dynamics in supercooled water shows increased disparity in dynamics occurring in the two different types of intervals. Nature of the distribution of particle displacements in supercooled water is investigated and it reveals signatures non-Gaussian behaviour.

17.
J Phys Chem B ; 119(34): 11157-68, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26131593

ABSTRACT

All-atom molecular dynamics simulations have been carried out to investigate orientation jumps of acetamide molecules in three different ionic deep eutectics made of acetamide (CH3CONH2) and lithium salts of bromide (Br(­)), nitrate (NO3(­)) and perchlorate (ClO4(­)) at approximately 80:20 mole ratio and 303 K. Orientational jumps have been dissected into acetamide­acetamide and acetamide­ion catagories. Simulated jump characteristics register a considerable dependence on the anion identity. For example, large angle jumps are relatively less frequent in the presence of NO3(­) than in the presence of the other two anions. Distribution of jump angles for rotation of acetamide molecules hydrogen bonded (H-bonded) to anions has been found to be bimodal in the presence of Br(­) and is qualitatively different from the other two cases. Estimated energy barrier for orientation jumps of these acetamide molecules (H-bonded to anions) differ by a factor of ∼2 between NO3(­) and ClO4(­), the barrier height for the latter being lower and ∼0.5kBT. Relative radial and angular displacements during jumps describe the sequence ClO(4)­ > NO3(­) > Br(­) and follow a reverse viscosity trend. Jump barrier for acetamide­acetamide pairs reflects weak dependence on anion identity and remains closer to the magnitude (∼0.7kBT) found for orientation jumps in molten acetamide. Jump time distributions exhibit a power law dependence of the type, P(tjump) ∝ A(tjump/τ)(−ß), with both ß and τ showing substantial anion dependence. The latter suggests the presence of dynamic heterogeneity in these systems and supports earlier conclusions from time-resolved fluorescence measurements.


Subject(s)
Acetamides/chemistry , Anions/chemistry , Computer Simulation , Electrolytes/chemistry
18.
J Phys Chem B ; 119(1): 274-83, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25496167

ABSTRACT

Here we report results from our molecular dynamics simulations on orientational relaxation and hydrogen bond dynamics of molten acetamide. Signatures for orientational jumps have been detected with jump barrier estimated to be ∼0.7 kBT. Simulated orientational relaxations indicate deviations from hydrodynamics and this deviation has been ascribed to the detected orientational jumps. Simulated free energy surfaces obtained at various distances between the rotating acetamide and its initial and final H-bond acceptors have been found to be symmetric double-well in nature at the transition state. H-bond relaxation times obtained from our simulations corroborate well with the time scales associated with the jump and waiting time distributions, suggesting an interrelationship between jump dynamics and H-bond fluctuations. Jump angle distributions are asymmetric and depict long tails extending to large angles.


Subject(s)
Acetamides/chemistry , Molecular Dynamics Simulation , Hydrogen Bonding
19.
Phys Rev Lett ; 113(6): 065301, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-25148332

ABSTRACT

We observe a long-lived solitary wave in a superfluid Fermi gas of (6)Li atoms after phase imprinting. Tomographic imaging reveals the excitation to be a solitonic vortex, oriented transverse to the long axis of the cigar-shaped atom cloud. The precessional motion of the vortex is directly observed, and its period is measured as a function of the chemical potential in the BEC-BCS crossover. The long period and the correspondingly large ratio of the inertial to the bare mass of the vortex are in good agreement with estimates based on superfluid hydrodynamics that we derive here using the known equation of state in the BEC-BCS crossover.

20.
Article in English | MEDLINE | ID: mdl-23944395

ABSTRACT

We investigate translocation mechanisms in smectic A liquid crystals (LCs) by a realistic, coarse-grained model of a LC compound comprising a stiff azobenzene core with flexible tails. We observe that the molecules can permeate from one smectic layer to the next via two different mechanisms, with and without significant reorientation, the former being facilitated through transverse interlayer intermediates. This is possible due to the intrinsic flexibility of the molecules. The two processes lead to characteristic signatures in the Van Hove self-correlation function, which can also be observed experimentally.

SELECTION OF CITATIONS
SEARCH DETAIL
...