Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(23): 10832-10842, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38807309

ABSTRACT

Five- and six-membered heterocycles containing nitrogen or oxygen have been considered as privileged scaffolds in organic chemistry and the chemical industry because of their usage in high-value commodities. Herein, we report a two-dimensional (2D) Cu(II)-based MOF catalyst, IITKGP-40, via the strategic employment of ample Lewis acid-base bifunctional sites (open metal nodes and free pyrazine moieties) along the pore wall. IITKGP-40 could convert toxic CO2 to cyclic carbonates in an atom-economical manner under solvent-free conditions and aromatic aldehyde to bioactive 1,4-DHPs via Hantzsch condensation. Exceptional catalytic performance (99%) and turnover number under mild reaction conditions for CO2 fixation using sterically hindered styrene oxide, and good-to-excellent yields for a wide range of aromatic aldehydes toward 1,4-dihydropyridines (1,4-DHPs) make IITKGP-40 promising as a multipurpose heterogeneous catalyst. Moreover, to demonstrate the practical utility of the catalyst, two biologically important drug molecules, diludine and nitrendipine analogue, have also been synthesized. IITKGP-40 is recyclable for at least three consecutive runs without significant loss of activity, making it promising for real-time applications.

2.
J Am Chem Soc ; 146(21): 14546-14557, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38748181

ABSTRACT

An efficient design of crystalline solid-state proton conductors (SSPCs) is crucial for the progress of clean energy applications. Developing such materials to make them work at room temperature with a conductivity of ≥10-1 S cm-1 is of significant interest in terms of technical and commercial aspects. Utilizing the recently highlighted "coordinated-water-driven proton conduction" approach, herein, we have rationally synthesized two highly stable and scalable 1D Co(II) coordination polymers (CPs) as SSPCs, PCM-2 {[Co(bpy)(H2O)2(NO3)2]·H2O}n and PCM-3 {[Co2(bpy)2(SO4)2(H2O)6].4H2O}n, with distinct alignments in coordinated water and coordinated oxo-anions (nitrate and sulfate, respectively). The acidity of the metal-bound water molecules in PCM-2 is further enhanced through cooperative long-range continuous H bonds with coordinated Brønsted basic nitrates (proton acceptors), leading to ultrahigh superprotonic conductivities even at 25 °C (1.03 × 10-1 S cm-1 under 95% RH), and reached a maximum of 2.99 × 10-1 S cm-1 at 85 °C (95% RH). The conductivity at 25 °C is even higher than that of commercial Nafion 117 (6.74 × 10-2 S cm-1 at 100% RH). The absence of such an H-bonding interaction in PCM-3 (closed loops) resulted in a lesser conductivity of 5.87 × 10-5 S cm-1 (95% RH, 85 °C). PCM-2 represents the first example of SSPC exhibiting conductivity in the order 10-1 S cm-1 at ambient temperature (25 °C) with excellent recyclability.

3.
Inorg Chem ; 61(42): 16952-16962, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36219769

ABSTRACT

Trivalent metal ions (Cr3+, Al3+, and Fe3+) constitute a major section of the environmental pollutants, and their excess accumulation has a detrimental effect on health, so their detection in trace quantity has been a hot topic of research. A highly scalable 3D porous Zn-based luminescent metal-organic framework (MOF) has been synthesized by exploiting the mixed ligand synthesis concept. The strategic selection of an aromatic π-conjugated organic linker and N-rich spacer containing the azine functionality as metal ion binding sites immobilized across the pore spaces, have made this MOF an ideal turn-on sensor for Al3+, Cr3+, and Fe3+ ions with very high sensitivity, selectivity, and recyclability. An in-depth study revealed absorbance caused enhancement mechanism (ACE) responsible for such turn-on phenomena. In order to make the detection process straightforward, convenient, portable, and economically viable, we have fabricated MOF test paper strips (the MOF could be simply immobilized onto the paper strips) for naked eye visual detection under UV light, which, thus, manifests its potential as a real-time smart sensor for these trivalent ions.


Subject(s)
Environmental Pollutants , Metal-Organic Frameworks , Ions/chemistry , Ligands , Limit of Detection , Metal-Organic Frameworks/chemistry , Solutions/chemistry , Aluminum/chemistry , Iron/chemistry , Chromium/chemistry
4.
Inorg Chem ; 61(31): 12396-12405, 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35895324

ABSTRACT

The development of chemically stable metal-organic framework (MOF)-based luminescent platforms for toxic ion detection in an aqueous medium is highly challenging because most of the classical MOFs are prone to water degradation, and that is the reason why most of the MOF-based luminescent sensors use a nonaqueous medium for sensing. In this contribution, we report two new water-stable luminescent MOFs (Zn-MOF-1 and Zn-MOF-2), assembled from a mixed-ligand synthesis approach. Because of the presence of a hydrophobic trifluoromethyl group to the backbone and stronger metal-N coordination, these MOFs exhibit excellent stability not only in water but also in acidic/alkaline aqueous solutions (pH = 3-10). Here, we report a green sensing approach by exploiting the significant reduction in photoluminescence of these MOFs in the presence of toxic ions. Fe3+ and CrO42-/Cr2O72- ions could be traced with a detection limit (LOD) in the micromolar range (0.045 and 0.745/0.33 µM for Zn-MOF-1; 125.2 and 114.2/83.5 µM for Zn-MOF-2). The mechanistic study reveals that competitive absorption of the excitation energy coupled with fluorescent resonance energy transfer are responsible for the turn-off quenching. The anti-interference ability and recyclability along with the pH stability gave these MOFs high potential to be used as practical sensors toward FeIII and CrVI ions in water as a greenest medium.


Subject(s)
Metal-Organic Frameworks , Chromium , Ferric Compounds , Hydrogen-Ion Concentration , Ions , Metal-Organic Frameworks/chemistry , Water/chemistry
5.
Polymers (Basel) ; 14(3)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35160625

ABSTRACT

This work aimed to investigate the degradation performance of natural cellulose acetate (CA) membranes filled with ZnO nanostructures. Photocatalytic degradation of reactive toxic dye methylene blue (MB) was studied as a model reaction using UV light. A CA membrane was previously casted and fabricated through the phase inversion processes and laboratory-synthesized ZnO microparticles as filler. The prepared membrane was characterized for pore size, ultrafiltration (UF) performance, porosity, morphology using scanning electron micrographs (SEM), water contact angle and catalytic degradation of MB. The prepared membrane shows a significant amount of photocatalytic oxidation under UV. The photocatalytic results under UV-light radiation in CA filled with ZnO nanoparticles (CA/ZnO) demonstrated faster and more efficient MB degradation, resulting in more than 30% of initial concentration. The results also revealed how the CA/ZnO combination effectively improves the membrane's photocatalytic activity toward methylene blue (MB), showing that the degradation process of dye solutions to UV light is chemically and physically stable and cost-effective. This photocatalytic activity toward MB of the cellulose acetate membranes has the potential to make these membranes serious competitors for removing textile dye and other pollutants from aqueous solutions. Hence, polymer-ZnO composite membranes were considered a valuable and attractive topic in membrane technology.

6.
Article in English | MEDLINE | ID: mdl-33842691

ABSTRACT

Over the past two decades, several deadly viral epidemics have emerged, which have placed humanity in danger. Previous investigations have suggested that viral diseases can spread through contaminants or contaminated surfaces. The transmission of viruses via polluted surfaces relies upon their capacity to maintain their infectivity while they are in the environment. Here, a range of materials that are widely used to manufacture personal protective equipment (PPE) are summarized, as these offer effective disinfection solutions and are the environmental variables that influence virus survival. Infection modes and prevention as well as disinfection and PPE disposal strategies are discussed. A coronavirus-like enveloped virus can live in the environment after being discharged from a host organism until it infects another healthy individual. Transmission of enveloped viruses such as SARS-CoV-2 can occur even without direct contact, although detailed knowledge of airborne routes and other indirect transmission paths is still lacking. Ground transmission of viruses is also possible via wastewater discharges. While enveloped viruses can contaminate potable water and wastewater through human excretions such as feces and droplets, careless PPE disposal can also lead to their transmission into our environment. This paper also highlights the possibility that viruses can be transmitted into the environment from PPE kits used by healthcare and emergency service personnel. A simulation-based approach was developed to understand the transport mechanism for coronavirus and similar enveloped viruses in the environment through porous media, and preliminary results from this model are presented here. Those results indicate that viruses can move through porous soil and eventually contaminate groundwater. This paper therefore underlines the importance of proper PPE disposal by healthcare workers in the Mediterranean region and around the world.

7.
Colloids Surf B Biointerfaces ; 190: 110921, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32172163

ABSTRACT

Staphylococcus aureus are known to cause diseases from normal skin wound to life intimidating infections. Among the drug resistant strain, management of methicillin resistant Staphylococcus aureus (MRSA) is very difficult by using conventional antibiotic treatment. Both Zinc oxide nanoparticles (ZnONPs) and pancreatin (PK) are known to have antibacterial activity. Our main objective is to dope PK on ZnONPs to reduced zinc-oxide toxicity but increased anti-bacterial and anti-biofilms activity. In present study, we showed that, functions of zinc oxide nanoparticles with pancreatin enzyme (ZnONPs-PK) have anti-bacterial, anti-biofilms, anti-motility and anti-virulence properties against MRSA. Moreover, ZnONPs-PK were more potent to eradicate MRSA than only ZnONPs and PK. Application of the produced nano-composites as treatment on infected swine dermis predominantly reflects the potential treatment property of it. The vancomycin sensitivity of MRSA was significantly increased on application with ZnONPs-PK. Further study revealed cell membrane was the target of the ZnONPs-PK and that leads to oxidative damage of the cells. The produced nanoparticles were found completely non-toxic to human's keratinocytes and lung epithelial cell lines at its bactericidal concentration. Overall, this study emphasizes the potential mechanisms underlying the selective bactericidal properties of ZnONPs-PK against MRSA. This novel nanoparticle strategy may provide the ideal solution for comprehensive management of MRSA and its associated diseases with minimising the use of antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Nanoparticles/chemistry , Pancreatin/pharmacology , Zinc Oxide/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Pancreatin/chemistry , Particle Size , Surface Properties , Zinc Oxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...