Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 25(46): 31741-31746, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37964748

ABSTRACT

Neodymium nickelate, NdNiO3, attracts attention due to the simultaneous occurrence of several phase transitions around the same temperature. The electronic properties of NdNiO3 are extremely complex as structural distortion, electron correlation, charge ordering, and orbital overlapping play significant roles in the transitions. We report the effects of electron and hole injection via doping a single 3d metal, V, in the NdNiO3 nanostructure to understand the variations in the electronic properties without any structural distortion. A reversible resistivity modulation of more than five orders of magnitude via hole doping and complete suppression of the metal to insulator transition via electron doping is observed along with the switching of major charge carriers. The modulation of electronic properties without any structural distortion and external strain opens up new directions to consider the NdNi1-xVxO3 nanostructures applicable as emerging electronic devices.

3.
J Phys Condens Matter ; 33(49)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34517357

ABSTRACT

A comprehensive temperature and high-pressure investigation on BiGdO3is carried out by means of dielectric constant, piezoelectric current, polarization-electric field loop, Raman scattering and x-ray diffraction measurements. Temperature dependent dielectric constant and dielectric loss show two anomalies at about 290 K (Tr) and 720 K (TC). The latter anomaly is most likely due to antiferroelectric to paraelectric transition as hinted by piezoelectric current and polarization-electric field loop measurements at room temperature, while the former anomaly suggests reorientation of polarization. A small deviation from linear behaviour of both the Raman modes due to structural modification in the vicinity ofTC; and sharp decrease in integrated intensities of these two modes aboveTCprovide further proof for the above antiferroelectric to paraelectric transition. Cubic to monoclinic structural transition is observed at about 10 GPa in high-pressure x-ray diffraction studies accompanied by anisotropic lattice parameter changes and large unit cell volume collapse during the transition. This structural transition is corroborated by anomalous softening and large increase in full width half maximum of M2(640 cm-1) Raman mode above 10 GPa. We speculate that enhancement of large structural distortion and large reduction inc/aratio above 10 GPa might be associated with antiferroelectric to ferroelectric transition in the system.

4.
Nat Commun ; 10(1): 3711, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31420538

ABSTRACT

Molecular crystals are not known to be as stiff as metals, composites and ceramics. Here we report an exceptional mechanical stiffness and high hardness in a known elastically bendable organic cocrystal [caffeine (CAF), 4-chloro-3-nitrobenzoic acid (CNB) and methanol (1:1:1)] which is comparable to certain low-density metals. Spatially resolved atomic level studies reveal that the mechanically interlocked weak hydrogen bond networks which are separated by dispersive interactions give rise to these mechanical properties. Upon bending, the crystals significantly conserve the overall energy by efficient redistribution of stress while perturbations in hydrogen bonds are compensated by strengthened π-stacking. Furthermore we report a remarkable stiffening and hardening in the elastically bent crystal. Hence, mechanically interlocked architectures provide an unexplored route to reach new mechanical limits and adaptability in organic crystals. This proof of concept inspires the design of light-weight, stiff crystalline organics with potential to rival certain inorganics, which currently seem inconceivable.

5.
J Phys Condens Matter ; 30(33): 335401, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-29988024

ABSTRACT

High pressure behaviour of nanocrystalline YCrO3 is investigated up to 10 GPa using electrical, magnetic, synchrotron x-ray diffraction and Raman spectroscopy measurements. High pressure dielectric constant measurements show a sharp peak at 4.5 GPa, though the sample is found to be in ferroelectric phase up to the highest pressure of our study from piezoelectric current measurements. X-ray diffraction measurements show absence of any structural phase transition, however anomalies are observed in the unit cell structural parameters at about 4.3 GPa and the Y-atom position shows a maximum shift at the same pressure. In the absence of any structural transition, anomalous behaviour of relevant Raman modes with minimum in the Raman band width at about same pressure indicate towards a spin-phonon interaction. AC magnetic measurements in the toroid anvil cell show an anomalous enhancement of magnetic moment above 4 GPa indicating a collective magnetic response of nanoparticles.

6.
Sci Rep ; 6: 31610, 2016 08 17.
Article in English | MEDLINE | ID: mdl-27530329

ABSTRACT

We have carried out detailed experimental investigations on polycrystalline CuO using dielectric constant, dc resistance, Raman spectroscopy and X-ray diffraction measurements at high pressures. Observation of anomalous changes both in dielectric constant and dielectric loss in the pressure range 3.7-4.4 GPa and reversal of piezoelectric current with reversal of poling field direction indicate to a change in ferroelectric order in CuO at high pressures. A sudden jump in Raman integrated intensity of Ag mode at 3.4 GPa and observation of Curie-Weiss type behaviour in dielectric constant below 3.7 GPa lends credibility to above ferroelectric transition. A slope change in the linear behaviour of the Ag mode and a minimum in the FWHM of the same indicate indirectly to a change in magnetic ordering. Since all the previous studies show a strong spin-lattice interaction in CuO, observed change in ferroic behaviour at high pressures can be related to a reentrant multiferroic ordering in the range 3.4 to 4.4 GPa, much earlier than predicted by theoretical studies. We argue that enhancement of spin frustration due to anisotropic compression that leads to change in internal lattice strain brings the multiferroic ordering to room temperature at high pressures.

7.
Nat Chem ; 7(1): 65-72, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25515892

ABSTRACT

The exceptional mechanical flexibility observed with certain organic crystals defies the common perception of single crystals as brittle objects. Here, we describe the morphostructural consequences of plastic deformation in crystals of hexachlorobenzene that can be bent mechanically at multiple locations to 360° with retention of macroscopic integrity. This extraordinary plasticity proceeds by segregation of the bent section into flexible layers that slide on top of each other, thereby generating domains with slightly different lattice orientations. Microscopic, spectroscopic and diffraction analyses of the bent crystal showed that the preservation of crystal integrity when stress is applied on the (001) face requires sliding of layers by breaking and re-formation of halogen-halogen interactions. Application of stress on the (100) face, in the direction where π···π interactions dominate the packing, leads to immediate crystal disintegration. Within a broader perspective, this study highlights the yet unrecognized extraordinary malleability of molecular crystals with strongly anisotropic supramolecular interactions.

8.
J Phys Condens Matter ; 24(11): 115404, 2012 Mar 21.
Article in English | MEDLINE | ID: mdl-22356849

ABSTRACT

High pressure Raman spectroscopy and x-ray diffraction measurements have been carried out on Pb(1-x)Ca(x)TiO(3) (x = 0.10 and 0.30). Using high pressure Raman spectroscopic data, it is observed that the phonon instability responsible for the ferroelectric phase reappears in the paraelectric phase after a critical pressure. The observed critical pressures in the Ca(2+) doped PbTiO(3) system are much lower than the unique pressures suggested for PbTiO(3) based materials. A suitable explanation is given to explain this lowering of critical pressure. It is also shown that the ferroelectric phase which stabilizes in the paraelectric phase has a tetragonal symmetry with space group I4cm.

9.
J Phys Condens Matter ; 23(36): 365401, 2011 Sep 14.
Article in English | MEDLINE | ID: mdl-21860074

ABSTRACT

High pressure x-ray diffraction and Raman spectroscopy studies have been carried out on non-stoichiometric sodium tungsten bronze, Na(0.025)WO(3). The high pressure investigations reveal a phase transition at about 2 GPa by a change of space group symmetry from P2(1)/n to P2(1)/c in the monoclinic cell followed by a second structural transformation to a triclinic lattice around 18 GPa. There are volume changes with these structural transformations, which are driven by rotation and significant distortion of WO(6) octahedra due to the displacement of tungsten and oxygen atoms from their mean positions in the unit cell.

10.
Phys Rev Lett ; 99(22): 225701, 2007 Nov 30.
Article in English | MEDLINE | ID: mdl-18233298

ABSTRACT

The melting curve of nitrogen was measured up to 71 GPa, a fourfold increase in pressure over previous measurements. The measurements were made using the laser-heated diamond anvil cell and melting was detected in situ by the laser speckle method. The melting temperature rises linearly up to a maximum at 50 GPa and 1920 K, and with increasing pressure suddenly decreases linearly to 1400 K at 71 GPa. This sharp drop in the melting slope (dT/dP) above 50 GPa indicates the appearance of a liquid denser than the solid and of a liquid-liquid phase transition. The sharpness of the changes suggests that the transition is first order and is a liquid-liquid polymer transition. This conclusion is consistent with earlier theoretical studies and experimental evidence that pressure transforms molecular nitrogen into a chainlike polymeric form.

SELECTION OF CITATIONS
SEARCH DETAIL
...