Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Appl Bio Mater ; 7(6): 4062-4079, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38831551

ABSTRACT

This work aimed to develop an enzyme-free semiconductor-assisted electrochemical technique for the selective detection of the neurotransmitter dopamine. In this case, electrochemically grown nickel oxyhydroxide [NiO(OH)] thin films were chosen to fabricate the sensing platform, i.e., the electrodes. Chronoamperometry was used to deposit the films on indium tin oxide (ITO) coated glass substrates. The films were thoroughly characterized to establish their structure, composition, phase purity, and electrochemical attributes. Electrochemical sensing characteristics were investigated by means of cyclic and differential pulse voltammetry, steady-state amperometry, and electrochemical impedance spectroscopy. The effects of several interfering agents like glucose, sodium chloride, methanol, hydrogen peroxide, and paracetamol were also studied on the detection attributes of dopamine. Significantly high value of sensitivity (11.87 µA µM-1 cm-2) was obtained for dopamine sensing that was associated with a limit of detection (LoD) of 0.22 µM of dopamine. However, the sensitivity (2.51 µA µM-1 cm-2) and LoD (1.20 µM) obtained for serotonin were inferior compared to those of dopamine. The performance of the electrode toward dopamine sensing was not compromised either in the presence of only serotonin or a series of other electroactive interfering agents, which makes the electrode very much dopamine selective. The dopamine response time was 200 ms, which is notably fast. Extensive studies on the effect of temperature, pH and scan rate on the detection of dopamine by the developed electrode material have also been carried out. The developed electrodes were also found to be notably stable for dopamine detection with a decay of only 6.6% in oxidation peak current density after the 50th cycle. Real-life application of the developed electrode material was checked with urine samples from adult male humans and yielded encouraging results.


Subject(s)
Dopamine , Electrochemical Techniques , Nickel , Dopamine/urine , Dopamine/analysis , Nickel/chemistry , Materials Testing , Biocompatible Materials/chemistry , Particle Size , Electrodes , Surface Properties , Hydroxides
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 250: 119368, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33406451

ABSTRACT

Sb2S3 hollow-spheres in powder form were synthesized through a facile chemical route. The synthesized material was found to have notably high specific surface area. After annealing it showed broadband absorption of light within the visible region. The valance band and conduction band of the synthesized semiconductor were also positioned appropriately (w.r.t NHE) so that the required redox reactions with water in presence of the photogenerated excitons are facilitated. These factors make it a suitable candidate for photocatalytic applications towards the degradation of dye based water pollutants. The synthesized material was established through systematic structural, compositional and optical characterizations. The photocatalytic efficacy toward the degradation of cationic, anionic and neutral dyes has been studied and the best degradation efficiency of 99.72% within 20 min has been achieved at a rate of 0.2920/min, which is significantly higher than many previous reports. Reusability, one of the major factors for the practical application of a catalyst, has also been studied in detail by investigating the probable changes in structural properties as well as in performance after several cycles of photodegradation. The reliability studies yielded encouraging results even after 50th cycle of photodegradation. The effect of catalyst loading on the photodegradation efficacy has also been studied.

3.
ACS Appl Mater Interfaces ; 11(19): 17501-17512, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31007019

ABSTRACT

Smart, self-powered, and wearable e-skin that mimics the pressure sensing property of the human skin is indispensable to boost up cutting edge robotics, artificial intelligence, prosthesis, and health-care monitoring technologies. Here, fabrication of a facile and flexible hybrid piezoelectric e-skin (HPES) with multifunctions of tactile mechanosensing, energy harvesting, self-cleaning, ultraviolet (UV)-protecting, and microwave shielding properties is reported. The principal block of the HPES is an SnO2 nanosheets@SiO2 (silica-encapsulated tin oxide nanosheets)/poly(vinylidene fluoride) (PVDF) nanocomposite (SS)-based PES acting as a single unit for simultaneous energy harvesting and tactile mechanosensing. Gentle human finger imparting onto the PES showed outstanding energy conversion efficiency (16.7%) with high power density (550 W·m-3) and current density (0.40 µA·cm-2). This device can generate high enough electrical power to directly drive portable electronics like a light-emitting diode (LED) panel (consisting of 85 commercial LEDs) and to charge up capacitors very rapidly. Thin PES mechanosensors demonstrated promising performance for quantitatively detecting static and dynamic pressure stimuli with a high sensitivity of 0.99 V·kPa-1 and a short response time of 1 ms. PES was also integrated to a health-data glove for precisely monitoring and discriminating fine motions of proximal interphalangeal, metacarpophalangeal, and distal interphalangeal joints of a human finger and bending motion of different human fingers. A (4 × 4) sensing matrix of PES was successfully employed to detect the spatial distribution of static pressure stimuli. The sensing matrix can precisely record the shape and size of an object placed onto it. PES was encapsulated with a nanocomposite film for providing self-cleaning and UV and microwave protection capability to the HPES. The hydrophobic SS film wrapping (water drop contact angle ∼85.6°) of the HPES enables the self-cleaning feature and makes HPES resistive against water and dirt. The HPES was integrated with in-house-made robotic hands, and the responses of the sensors due to grabbing of an object were evaluated. This work explores new prospects for UV- and microwave-protective, self-cleaning e-skin for energy harvesting and mechanosensation, which can eventually boost up the self-powered electronics, robotics, real-time health-care monitoring, and artificial intelligence technologies.


Subject(s)
Biosensing Techniques , Nanocomposites/chemistry , Nanotechnology , Electric Power Supplies , Fingers/physiology , Humans , Hydrophobic and Hydrophilic Interactions , Microwaves , Motion , Silicon Dioxide/chemistry , Skin/chemistry , Touch , Water/chemistry
4.
Photochem Photobiol Sci ; 17(4): 465-473, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29565438

ABSTRACT

A novel highly sensitive and selective fluorescent chemosensor L has been synthesized and characterized by various physicochemical techniques. In 3 : 7 water : MeCN (v/v) at pH 7.2 (10 mM HEPES buffer, µ = 0.05 M LiCl), it selectively recognizes Fe3+ through 1 : 1 complexation resulting in a 106-fold fluorescence enhancement and a binding constant of 8.10 × 104 M-1. The otherwise non-fluorescent spirolactam form of the probe results a dual-channel (absorbance and fluorescence) recognition of Fe3+via CHEF (chelation enhanced fluorescence) through the opening of the spirolactam ring. We have also carried out fluorescence titration and anisotropy (r) studies in pure water in the presence of SDS (sodium dodecyl sulphate). Based on the dependence of FI (fluorescence intensity) and r on [SDS] it was proposed that the probe is trapped between two SDS monolayers which again interact among themselves by ππ stacking. As a result, there is an increase in FI up to [SDS] ∼ 7 mM - a phenomenon reminiscent of aggregation-induced enhancement of emission (AIEE). Beyond this concentration of SDS (7 mM), micelle formation takes place and the ππ stacked polymer now becomes a monomer and is trapped inside the micellar cavity. As a result, there is a decrease in FI at [SDS] > 7 mM. But for anisotropy, it increases with [SDS] beyond 7 mM. Ligand, metal, and SDS interactions are well established through different optical and morphological studies. [L-Fe(NO3)]2+ thin films on FTO (Fluorine-doped Tin Oxide) glass substrates have been designed with the help of the spin-coating deposition technique. The deposited film of thickness 1.6 × 10-5 cm is well characterized by optical band gap calculation with a direct band gap, εg ∼ 1.6 eV. FESEM was also performed for the [L-Fe(NO3)]2+/FTO film. The current-voltage characteristics were measured by the two-probe technique. Light-dependent exciton generation was carried out by taking the top and bottom contacts with graphite paste on FTO and on the [L-Fe(NO3)]2+ films for the measurement of switching behavior. The response ratio curve for the light-induced frequency-switching phenomena has been obtained. The frequency taped here is the oscillation frequency of the photo-generated electron and the hole in an exiton. Thus, the light-induced frequency-switching behavior and Schottky barrier diode characteristics of the material were established.

5.
ACS Sens ; 2(12): 1831-1838, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29172487

ABSTRACT

ZnO/γ-Fe2O3 heterostructure has been deposited in the form of thin films using a single step facile electrochemical technique. Considering the unique properties of both ZnO and γ-Fe2O3 toward the sensing of reducing gases, the concept of forming a heterostructure between them has been conceived. The structural characterization of the deposited material has been performed using X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy, which revealed a flowerlike morphology with the coexistence of both ZnO and γ-Fe2O3 leading to the formation of a heterostructure. The material showed excellent sensing properties toward the selective detection of H2S at room temperature (30 °C) among the three test gases, namely, CH4, H2S, and CO. The effect of relative humidity was also studied to have an idea about the performance of the device under a real situation. The results are promising and better than those of many commercially available sensors. The room temperature selective detection will help in facile fabrication of portable gadgets.


Subject(s)
Ferric Compounds/chemistry , Hydrogen Sulfide/analysis , Zinc Oxide/chemistry , Electrochemical Techniques/methods , Humidity , Hydrogen Sulfide/chemistry , Oxidation-Reduction , Temperature
6.
Phys Chem Chem Phys ; 19(20): 12838-12844, 2017 May 24.
Article in English | MEDLINE | ID: mdl-28470288

ABSTRACT

Herein, we report the fabrication of flexible solar cells based on a crystalline p-Si/n-ZnO heterostructure for the first time. An enhancement of ∼52% in the base efficiency was achieved by the application of spherical SiO2 nanoparticles as light trapping structures on the top. The use of ZnO not only offers a facile route of synthesis, but also provides an additional advantage of large band bending, leading to notable open circuit voltage and formation of an intermediate ultra-thin barrier layer of Zn2SiO4 for minimized carrier recombination. The spherical silica nanoparticles act as nanoresonators, causing absorption hot-spots in the thin silicon absorber, along with the capability of providing wide-angle light-collection. Simulation showed, for the higher angle of incidence, that the silica nanoparticles have the ability to bend light on the same side of the normal to the incident wave-front, thereby acting as a negative index metamaterial (NIM). The flexibility and cost-effectiveness of this device can make it important for the next-generation photovoltaics and roll-to-roll electronics.

7.
Phys Chem Chem Phys ; 17(41): 27777-88, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-26435126

ABSTRACT

Metal oxide semiconductors have been extensively used as reducing gas sensors with major limitations regarding selectivity and operating temperature which is relatively high for most of the cases making the device unusable in some critical situations. Higher operating temperature is also associated with the higher power consumption, which goes against the miniaturization of the device. In order to resolve these problems, here we introduced a ZnO/ZnO2 straddling 'n-N' isotype heterostructure as a highly selective and sensitive methane sensor at moderately low operating temperature. ZnO-Zn(OH)2 precursor films were treated in oxygen plasma in a pulsed DC magnetron sputtering system. Morphological analyses by field emission scanning electron microscopy showed flake like growth of the grains with high surface roughness, whereas X-ray diffraction (XRD) showed polycrystalline nature of the films. Polycrystalline ZnO2 peaks were observed in the XRD pattern in addition to the existing ZnO, which indicates modification of the precursor to oxygen rich heterostructure of ZnO/ZnO2. This was further supported by the shifting of the O1s peak in the X-ray photoelectron spectroscopic analysis. Plasma treated ZnO/ZnO2 heterostructured films were found to show high selectivity towards methane (with respect to H2S and CO) and sensitivity (∼96%) at a comparatively low operating temperature.

8.
Phys Chem Chem Phys ; 17(35): 22784-98, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26260070

ABSTRACT

Poly(vinylidene fluoride) (PVDF) nanocomposites are recently gaining importance due to their unique dielectric and electroactive responses. In this study, GeO2 nanoparticles/PVDF and SiO2 nanoparticles/PVDF nanocomposite films were prepared by a simple solution casting technique. The surface morphology and structural properties of the as-prepared films were studied by X-ray diffraction, scanning electron microscopy, and FT-IR spectroscopy techniques. The studies reveal that the incorporation of GeO2 or SiO2 nanoparticles leads to an enhancement in the electroactive ß phase fraction of PVDF due to the strong interactions between the negatively charged nanoparticle surface and polymer. Analysis of the thermal properties of the as-prepared samples also supports the increment of the ß phase fraction in PVDF. Variation of dielectric constant, dielectric loss, and ac conductivity with frequency and loading fraction of the nanoparticles were also studied for all the as-prepared films. Dielectric constant of the nanocomposite films increases with increasing nanofiller concentration in PVDF. 15 mass% SiO2-loaded PVDF film shows the highest dielectric constant, which can be attributed to the smaller size of SiO2 nanoparticles and the homogeneous and discrete dispersion of SiO2 nanoparticles in PVDF matrix.

9.
ACS Appl Mater Interfaces ; 6(6): 3879-87, 2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24564703

ABSTRACT

Metal oxide semiconductors (MOS) are well known as reducing gas sensors. However, their selectivity and operating temperature have major limitations. Most of them show cross sensitivity and the operating temperatures are also relatively higher than the value reported here. To resolve these problems, here, we report the use of palladium-silver (70-30%) activated ZnO thin films as a highly selective methane sensor at low operating temperature (∼100 °C). Porous ZnO thin films were deposited on fluorine-doped tin oxide (FTO)-coated glass substrates by galvanic technique. X-ray diffraction showed polycrystalline nature of the films, whereas the morphological analyses (field emission scanning electron microscopy) showed flake like growth of the grains mainly on xy plane with high surface roughness (107 nm). Pd-Ag (70-30%) alloy was deposited on such ZnO films by e-beam evaporation technique with three different patterns, namely, random dots, ultrathin (∼1 nm) layer and thin (∼5 nm) layer as the activation layer. ZnO films with Pd-Ag dotted pattern were found show high selectivity towards methane (with respect to H2S and CO) and sensitivity (∼80%) at a comparatively low operating temperature of about 100°C. This type of sensor was found to have higher methane selectivity in comparison to other commercially available reducing gas sensor.

10.
J Colloid Interface Sci ; 393: 286-90, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23218234

ABSTRACT

Thin films of nanocrystalline and porous FeS(2) with marcasite phase have been deposited from a greenish-blue iron nitroprusside precursor film, which readily gives FeS(2) on reacting with an aqueous solution of sodium sulfide. High resolution X-ray diffraction (HRXRD) pattern indicated the formation of polycrystalline and orthorhombic (marcasite) phase of FeS(2), whereas the field emission scanning electron microscopy (FESEM) showed the morphology of the films to be consisted of grains of average 25 nm diameter with unevenly distributed numerous pores. Optical characterization (UV-Vis and photoluminescence) revealed significant amount of blueshift in the band gap energy of the deposited material, which is attributed to the strong quantum confinement effect exerted by the FeS(2) nanocrystals. The deposited FeS(2) films showed good photocatalytic activity toward the degradation of Rose Bengal dye and could be found efficient for wastewater treatment.


Subject(s)
Ferrous Compounds/chemistry , Rose Bengal/chemistry , Catalysis , Particle Size , Photochemical Processes , Porosity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...