Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202402214, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745375

ABSTRACT

Aluminum oxide (Al2O3) nanopowder is spin-coated onto both sides of commercial polypropene separator to create artificial solid-electrolyte interphase (SEI) and artificial cathode electrolyte interface (CEI) in potassium metal batteries (KMBs). This significantly enhances the stability, including of KMBs with Prussian Blue (PB) cathodes. For example, symmetric cells are stable after 1,000 cycles at 0.5 mA/cm2 - 0.5 mAh/cm2 and 3.0 mA/cm2 - 0.5 mAh/cm2. Alumina modified separators promote electrolyte wetting and increase ionic conductivity (0.59 vs. 0.2 mS/cm) and transference number (0.81 vs. 0.23). Cryo-stage focused ion beam (cryo-FIB) analysis of cycled modified anode demonstrates dense and planar electrodeposits, versus unmodified baseline consisting of metal filaments (dendrites) interspersed with pores and SEI. Alumina-modified CEI also suppresses elemental Fe crossover and reduces cathode cracking. Mesoscale modeling of metal - SEI interactions captures crucial role of intrinsic heterogeneities, illustrating how artificial SEI affects reaction current distribution, conductivity and morphological stability.

2.
Adv Sci (Weinh) ; 11(6): e2307455, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38072655

ABSTRACT

As solid-state batteries (SSBs) with lithium (Li) metal anodes gain increasing traction as promising next-generation energy storage systems, a fundamental understanding of coupled electro-chemo-mechanical interactions is essential to design stable solid-solid interfaces. Notably, uneven electrodeposition at the Li metal/solid electrolyte (SE) interface arising from intrinsic electrochemical and mechanical heterogeneities remains a significant challenge. In this work, the thermodynamic origins of mechanics-coupled reaction kinetics at the Li/SE interface are investigated and its implications on electrodeposition stability are unveiled. It is established that the mechanics-driven energetic contribution to the free energy landscape of the Li deposition/dissolution redox reaction has a critical influence on the interface stability. The study presents the competing effects of mechanical and electrical overpotential on the reaction distribution, and demarcates the regimes under which stress interactions can be tailored to enable stable electrodeposition. It is revealed that different degrees of mechanics contribution to the forward (dissolution) and backward (deposition) reaction rates result in widely varying stability regimes, and the mechanics-coupled kinetics scenario exhibited by the Li/SE interface is shown to depend strongly on the thermodynamic and mechanical properties of the SE. This work highlights the importance of discerning the underpinning nature of electro-chemo-mechanical coupling toward achieving stable solid/solid interfaces in SSBs.

3.
Angew Chem Int Ed Engl ; 62(23): e202300943, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-36893078

ABSTRACT

Combined synchrotron X-ray nanotomography imaging, cryogenic electron microscopy (cryo-EM) and modeling elucidate how potassium (K) metal-support energetics influence electrodeposit microstructure. Three model supports are employed: O-functionalized carbon cloth (potassiophilic, fully-wetted), non-functionalized cloth and Cu foil (potassiophobic, nonwetted). Nanotomography and focused ion beam (cryo-FIB) cross-sections yield complementary three-dimensional (3D) maps of cycled electrodeposits. Electrodeposit on potassiophobic support is a triphasic sponge, with fibrous dendrites covered by solid electrolyte interphase (SEI) and interspersed with nanopores (sub-10 nm to 100 nm scale). Lage cracks and voids are also a key feature. On potassiophilic support, the deposit is dense and pore-free, with uniform surface and SEI morphology. Mesoscale modeling captures the critical role of substrate-metal interaction on K metal film nucleation and growth, as well as the associated stress state.

4.
Adv Mater ; 35(8): e2206762, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36445936

ABSTRACT

A stable anode-free all-solid-state battery (AF-ASSB) with sulfide-based solid-electrolyte (SE) (argyrodite Li6 PS5 Cl) is achieved by tuning wetting of lithium metal on "empty" copper current-collector. Lithiophilic 1 µm Li2 Te is synthesized by exposing the collector to tellurium vapor, followed by in situ Li activation during the first charge. The Li2 Te significantly reduces the electrodeposition/electrodissolution overpotentials and improves Coulombic efficiency (CE). During continuous electrodeposition experiments using half-cells (1 mA cm-2 ), the accumulated thickness of electrodeposited Li on Li2 Te-Cu is more than 70 µm, which is the thickness of the Li foil counter-electrode. Full AF-ASSB with NMC811 cathode delivers an initial CE of 83% at 0.2C, with a cycling CE above 99%. Cryogenic focused ion beam (Cryo-FIB) sectioning demonstrates uniform electrodeposited metal microstructure, with no signs of voids or dendrites at the collector-SE interface. Electrodissolution is uniform and complete, with Li2 Te remaining structurally stable and adherent. By contrast, an unmodified Cu current-collector promotes inhomogeneous Li electrodeposition/electrodissolution, electrochemically inactive "dead metal," dendrites that extend into SE, and thick non-uniform solid electrolyte interphase (SEI) interspersed with pores. Density functional theory (DFT) and mesoscale calculations provide complementary insight regarding nucleation-growth behavior. Unlike conventional liquid-electrolyte metal batteries, the role of current collector/support lithiophilicity has not been explored for emerging AF-ASSBs.

5.
Nat Mater ; 21(11): 1298-1305, 2022 11.
Article in English | MEDLINE | ID: mdl-36050382

ABSTRACT

Understanding and mitigating filament formation, short-circuit and solid electrolyte fracture is necessary for advanced all-solid-state batteries. Here, we employ a coupled far-field high-energy diffraction microscopy and tomography approach for assessing the chemo-mechanical behaviour for dense, polycrystalline garnet (Li7La3Zr2O12) solid electrolytes with grain-level resolution. In situ monitoring of grain-level stress responses reveals that the failure mechanism is stochastic and affected by local microstructural heterogeneity. Coupling high-energy X-ray diffraction and far-field high-energy diffraction microscopy measurements reveals the presence of phase heterogeneity that can alter local chemo-mechanics within the bulk solid electrolyte. These local regions are proposed to be regions with the presence of a cubic polymorph of LLZO, potentially arising from local dopant concentration variation. The coupled tomography and FF-HEDM experiments are combined with transport and mechanics modelling to illustrate the degradation of polycrystalline garnet solid electrolytes. The results showcase the pathways for processing high-performing solid-state batteries.


Subject(s)
Electric Power Supplies , Electrolytes , Electrolytes/chemistry , X-Ray Diffraction , Microscopy , Tomography, X-Ray Computed
6.
ACS Appl Mater Interfaces ; 14(40): 45308-45319, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36170575

ABSTRACT

Solid-state batteries (SSBs) employing a lithium metal anode are a promising candidate for next-generation energy storage systems, delivering higher power and energy densities. Interfacial instabilities due to non-uniform electrodeposition at the anode-solid electrolyte (SE) interface pose major constraints on the safety and endurance of SSBs. In this regard, non-uniform kinetic interactions at the anode-SE interface which are derived from cathode microstructural heterogeneity can have significant impact on anode stability. In this work, we present a comprehensive insight into microstructural heterogeneity-driven cathode-anode cross-talk and delineate the role of cathode architecture and SE separator design in dictating reaction heterogeneity at the anode-SE interface. We show that intrinsic and extrinsic parameters, such as cathode loading, separator thickness, particle morphologies of active material and SE, and temperature can have significant impact on reaction heterogeneity at the anode-SE interface and thus govern anode stability. Tradeoff between energy density and anode stability while achieving higher cathode loading and thinner SE separators is highlighted, and potential strategies to mitigate this problem are discussed. This work provides fundamental insights into cathode-anode cross-talk involving interfacial heterogeneities and enhancement in energy densities of SSBs via electrode engineering.

7.
ACS Appl Mater Interfaces ; 14(26): 29754-29765, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35732069

ABSTRACT

Solid-state batteries (SSBs) hold the potential to enhance the energy density, power density, and safety of conventional lithium-ion batteries. The theoretical promise of SSBs is predicated on the mechanistic design and comprehensive analysis of various solid-solid interfaces and microstructural features within the system. The spatial arrangement and composition of constituent phases (e.g., active material, solid electrolyte, binder) in the solid-state cathode dictate critical characteristics such as solid-solid point contacts or singularities within the microstructure and percolation pathways for ionic/electronic transport. In this work, we present a comprehensive mesoscale discourse to interrogate the underlying microstructure-coupled kinetic-transport interplay and concomitant modes of resistances that evolve during electrochemical operation of SSBs. Based on a hierarchical physics-based analysis, the mechanistic implications of solid-solid point contact distribution and intrinsic transport pathways on the kinetic heterogeneity is established. Toward designing high-energy-density SSB systems, the fundamental correlation between active material loading, electrode thickness and electrochemical response has been delineated. We examine the paradigm of carbon-binder free cathodes and identify design criteria that can facilitate enhanced performance with such electrode configurations. A mechanistic design map highlighting the dichotomy in kinetic and ionic/electronic transport limitations that manifest at various SSB cathode microstructural regimes is established.

8.
ACS Appl Mater Interfaces ; 14(26): 29711-29721, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35727222

ABSTRACT

Sodium-ion batteries have emerged as a strong contender among the beyond lithium-ion chemistries due to elemental abundance and the low cost of sodium. Tin (Sn) is a promising alloying electrode with high capacity, redox reversibility, and earth abundance. Tin electrodes, however, undergo a series of intermediate reactions exhibiting multiple voltage plateaus upon sodiation/desodiation. Phase transformations related to incomplete sodiation in tin during cycling, in the presence of a frail solid electrolyte interphase layer, can quickly weaken the structural stability. The structural dynamics and reactivity of the electrode/electrolyte interface, being further dependent on the size and morphology of the active material particle in the presence of different electrolytes, dictate the electrode degradation and survivability during cycling. In this study, we paint a comprehensive picture of the underpinnings of the electrochemical and mechanics coupling and electrode/electrolyte interfacial interactions in alloying Sn electrodes. We elicit the fundamental role of electrode/electrolyte complexations in the Sn electrode structure-property-performance relationship based on multimodal analytics, including electrochemical, microscopy, and tomography analyses.

9.
Langmuir ; 38(18): 5472-5480, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35465678

ABSTRACT

The solid electrolyte interphase (SEI) plays a pivotal role in enabling fast ionic transport and preserving the battery electrodes from parasitic reactions with solvents. However, due to large volume changes of lithium (Li) electrodes, the SEI layer can potentially undergo mechanical failure, resulting in electrolyte degradation. The mechanical stability of the SEI is a critical aspect that needs to be modulated for designing rechargeable metal batteries with optimal performance. In this work, we perform density functional theory calculations to investigate the mechanical properties of lithium fluoride (LiF) and lithium oxide (Li2O) nanofilms and quantify the Li surface diffusion kinetics over these two SEI materials. Based on our analysis, it is identified that Young's modulus and the ideal strength of the SEI are strong functions of the nanofilm thickness and crystallographic direction. Interestingly, we find that mechanical strain substantially alters the Li surface diffusion behavior on the SEI. For a strain of 4%, while the Li surface diffusion rate decreases by two orders of magnitude on the stretched Li2O film, it increases two times on the stretched LiF film, indicating critical implications on the morphological stability of the metal anode. A fundamental correlation between inherent SEI properties and Li plating behavior is revealed, suggesting a potential pathway to achieve dendrite-free electrodeposition via SEI modulation.

10.
ACS Appl Mater Interfaces ; 14(16): 18335-18352, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35422120

ABSTRACT

Electrode-scale heterogeneity can combine with complex electrochemical interactions to impede lithium-ion battery performance, particularly during fast charging. This study investigates the influence of electrode heterogeneity at different scales on the lithium-ion battery electrochemical performance under operational extremes. We employ image-based mesoscale simulation in conjunction with a three-dimensional electrochemical model to predict performance variability in 14 graphite electrode X-ray computed tomography data sets. Our analysis reveals that the tortuous anisotropy stemming from the variable particle morphology has a dominating influence on the overall cell performance. Cells with platelet morphology achieve lower capacity, higher heat generation rates, and severe plating under extreme fast charge conditions. On the contrary, the heterogeneity due to the active material clustering alone has minimal impact. Our work suggests that manufacturing electrodes with more homogeneous and isotropic particle morphology will improve electrochemical performance and improve safety, enabling electromobility.

11.
Langmuir ; 38(16): 4879-4886, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35410475

ABSTRACT

We quantitatively investigate the role of voltage fluctuation in terms of different waveforms on the electrodeposition dynamics and morphology for varying electrolyte concentrations. Dependent on the electrolyte concentration, a wide range of morphologies ranging from highly branched dendrites to comparatively closed packed electrodeposits has been captured. We mechanistically map the deposition dynamics by image analysis and demonstrate the highly porous dendritic dynamics to be independent of external perturbation. Additionally, comparatively closed packed morphological features show significant sensitivity toward the frequency and nature of the waveforms. The results provide fundamental insights into the correlation between the time scales of voltage fluctuation and growth dynamics. We comprehensively analyze the effect of the waveform nature on the average deposition height and show sinusoidal fluctuation to be preferred over square and pulse for metal batteries for lower deposition heights.

12.
ACS Appl Mater Interfaces ; 14(1): 943-953, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34978406

ABSTRACT

Graphite electrodes in the lithium-ion battery exhibit various particle shapes, including spherical and platelet morphologies, which influence structural and electrochemical characteristics. It is well established that porous structures exhibit spatial heterogeneity, and the particle morphology can influence transport properties. The impact of the particle morphology on the heterogeneity and anisotropy of geometric and transport properties has not been previously studied. This study characterizes the spatial heterogeneities of 18 graphite electrodes at multiple length scales by calculating and comparing the structural anisotropy, geometric quantities, and transport properties (pore-scale tortuosity and electrical conductivity). We found that the particle morphology and structural anisotropy play an integral role in determining the spatial heterogeneity of directional tortuosity and its dependency on pore-scale heterogeneity. Our analysis reveals that the magnitude of in-plane and through-plane tortuosity difference influences the multiscale heterogeneity in graphite electrodes.

13.
Nat Mater ; 21(2): 217-227, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34824396

ABSTRACT

Lithium-ion batteries are yet to realize their full promise because of challenges in the design and construction of electrode architectures that allow for their entire interior volumes to be reversibly accessible for ion storage. Electrodes constructed from the same material and with the same specifications, which differ only in terms of dimensions and geometries of the constituent particles, can show surprising differences in polarization, stress accumulation and capacity fade. Here, using operando synchrotron X-ray diffraction and energy dispersive X-ray diffraction (EDXRD), we probe the mechanistic origins of the remarkable particle geometry-dependent modification of lithiation-induced phase transformations in V2O5 as a model phase-transforming cathode. A pronounced modulation of phase coexistence regimes is observed as a function of particle geometry. Specifically, a metastable phase is stabilized for nanometre-sized spherical V2O5 particles, to circumvent the formation of large misfit strains. Spatially resolved EDXRD measurements demonstrate that particle geometries strongly modify the tortuosity of the porous cathode architecture. Greater ion-transport limitations in electrode architectures comprising micrometre-sized platelets result in considerable lithiation heterogeneities across the thickness of the electrode. These insights establish particle geometry-dependent modification of metastable phase regimes and electrode tortuosity as key design principles for realizing the promise of intercalation cathodes.

14.
Toxins (Basel) ; 15(1)2022 12 28.
Article in English | MEDLINE | ID: mdl-36668842

ABSTRACT

INTRODUCTION: Snakebite is an urgent, unmet global medical need causing significant morbidity and mortality worldwide. Varespladib is a potent inhibitor of venom secretory phospholipase A2 (sPLA2) that can be administered orally via its prodrug, varespladib-methyl. Extensive preclinical data support clinical evaluation of varespladib as a treatment for snakebite envenoming (SBE). The protocol reported here was designed to evaluate varespladib-methyl for SBE from any snake species in multiple geographies. METHODS AND ANALYSIS: BRAVO (Broad-spectrum Rapid Antidote: Varespladib Oral for snakebite) is a multicenter, randomized, double-blind, placebo-controlled, phase 2 study to evaluate the safety, tolerability, and efficacy of oral varespladib-methyl plus standard of care (SoC) vs. SoC plus placebo in patients presenting with acute SBE by any venomous snake species. Male and female patients 5 years of age and older who meet eligibility criteria will be randomly assigned 1:1 to varespladib-methyl or placebo. The primary outcome is the Snakebite Severity Score (SSS) that has been modified for international use. This composite outcome is based on the sum of the pulmonary, cardiovascular, nervous, hematologic, and renal systems components of the updated SSS. ETHICS AND DISSEMINATION: This protocol was submitted to regulatory authorities in India and the US. A Clinical Trial No Objection Certificate from the India Central Drugs Standard Control Organisation, Drug Controller General-India, and a Notice to Proceed from the US Food and Drug Administration have been obtained. The study protocol was approved by properly constituted, valid institutional review boards or ethics committees at each study site. This study is being conducted in compliance with the April 1996 ICH Guidance for Industry GCP E6, the Integrated Addendum to ICH E6 (R2) of November 2016, and the applicable regulations of the country in which the study is conducted. The trial is registered on Clinical trials.gov, NCT#04996264 and Clinical Trials Registry-India, 2021/07/045079 000062.


Subject(s)
Phospholipases A2, Secretory , Snake Bites , Humans , Male , Female , Snake Bites/drug therapy , Randomized Controlled Trials as Topic , Multicenter Studies as Topic , Clinical Trials, Phase II as Topic
15.
ACS Omega ; 6(49): 33284-33292, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34926880

ABSTRACT

The performance and safety of lithium-ion batteries are plagued by several diverse, nonlinear aging mechanisms influenced by the electrochemical thermal interactions at the electrodes, usage history, and operating conditions. Understanding and deconvoluting the fundamental reaction mechanisms responsible for electrode degradation are key for developing technologies in Li-ion battery diagnostics and prognostics. Hence, there exists a need for high-precision operando techniques to investigate and characterize distinct electrode degradation modes over a gamut of operational variability. Cells embedded with a stable, nonpolarizable reference electrode offer an in situ and operando tool to decouple the complex electrochemical interplay between the electrode pair by measuring individual electrode responses simultaneously with the cell response in the time and frequency domains. This perspective comprehensively looks at 3-electrode (3ε) analytics as a versatile toolbox, highlighting recent techniques and parameters developed with an emphasis on degradation diagnostics and control strategies that is expected to drive the futuristic design of battery management systems.

16.
Nat Commun ; 12(1): 5414, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34521853

ABSTRACT

Image-based simulation, the use of 3D images to calculate physical quantities, relies on image segmentation for geometry creation. However, this process introduces image segmentation uncertainty because different segmentation tools (both manual and machine-learning-based) will each produce a unique and valid segmentation. First, we demonstrate that these variations propagate into the physics simulations, compromising the resulting physics quantities. Second, we propose a general framework for rapidly quantifying segmentation uncertainty. Through the creation and sampling of segmentation uncertainty probability maps, we systematically and objectively create uncertainty distributions of the physics quantities. We show that physics quantity uncertainty distributions can follow a Normal distribution, but, in more complicated physics simulations, the resulting uncertainty distribution can be surprisingly nontrivial. We establish that bounding segmentation uncertainty can fail in these nontrivial situations. While our work does not eliminate segmentation uncertainty, it improves simulation credibility by making visible the previously unrecognized segmentation uncertainty plaguing image-based simulation.

17.
Nat Mater ; 20(4): 503-510, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33510445

ABSTRACT

Despite progress in solid-state battery engineering, our understanding of the chemo-mechanical phenomena that govern electrochemical behaviour and stability at solid-solid interfaces remains limited compared to at solid-liquid interfaces. Here, we use operando synchrotron X-ray computed microtomography to investigate the evolution of lithium/solid-state electrolyte interfaces during battery cycling, revealing how the complex interplay among void formation, interphase growth and volumetric changes determines cell behaviour. Void formation during lithium stripping is directly visualized in symmetric cells, and the loss of contact that drives current constriction at the interface between lithium and the solid-state electrolyte (Li10SnP2S12) is quantified and found to be the primary cause of cell failure. The interphase is found to be redox-active upon charge, and global volume changes occur owing to partial molar volume mismatches at either electrode. These results provide insight into how chemo-mechanical phenomena can affect cell performance, thus facilitating the development of solid-state batteries.

18.
ACS Appl Mater Interfaces ; 12(50): 55795-55808, 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33274910

ABSTRACT

Metallic lithium deposition on graphite anodes is a critical degradation mode in lithium-ion batteries, which limits safety and fast charge capability. A conclusive strategy to mitigate lithium deposition under fast charging yet remains elusive. In this work, we examine the role of electrode microstructure in mitigating lithium plating behavior under various operating conditions, including fast charging. The multilength scale characteristics of the electrode microstructure lead to a complex interaction of transport and kinetic limitations that significantly governs the cell performance and the occurrence of Li plating. We demonstrate, based on a comprehensive mesoscale analysis, that the performance and degradation can be significantly modulated via systematic design improvements at the hierarchy of length scales. It is found that the improvement in kinetic and transport characteristics achievable at disparate scales can dramatically affect Li plating propensity.

19.
Langmuir ; 36(35): 10471-10489, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32787019

ABSTRACT

We present a comprehensive computational physics-based study of the influence of surface wettability on the displacement behavior of a droplet in a three-dimensional bifurcating channel. Various surface wettability configurations for the daughter branches are considered to gain insight into the wettability-capillarity interaction. Also, the influence of initial droplet size on the splitting dynamics for different wettability configurations is investigated. Time evolution of the droplet displacement behavior in the bifurcating channel is discussed for different physicochemical parameters including capillary number and wettability. Three distinct flow regimes are identified as the droplet interacts with the bifurcating tip of the channel, namely, splitting, nonsplitting, and oscillating regimes. Furthermore, the occurrence of Rayleigh-Plateau instability in different wettability scenarios is discussed. Additionally, the intricacies associated with the droplet dynamics are elucidated through the temporal evolution of the droplet surface area and mass outflow of the continuous phase. A flow regime map based on the capillary number and wettability contrast of the daughter branches is proposed for a comprehensive description of the droplet dynamics.

20.
ACS Appl Mater Interfaces ; 12(27): 30438-30448, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32551528

ABSTRACT

Existing in operando methods for detection of plated lithium can only detect the presence of plating after the charge is complete and irreversible damage has already occurred. In this work, the characteristic potential minimum on the graphite electrode during high rate lithiation is proposed and assessed as an in operando technique for detecting the onset of lithium plating. While other studies have shown that rapid self-heating of a cell can cause this type of "voltage overshoot", we confirm through temperature-controlled coin cell experiments that such a voltage profile can also be caused by the occurrence of severe lithium plating. In cells which demonstrated voltage overshoot, macroscopically observable lithium plating films were present on the graphite electrodes upon disassembly, resulting in very poor single-cycle Coulombic efficiency. The significance of this voltage characteristic is confirmed through direct observation of the onset of lithium plating in an in situ optical microscopy cell. We observe that the growth of large metallic lithium deposits within the porous electrode structure can cause swelling and cracking of the graphite electrode, suggesting loss of active material due to mechanical electrode degradation as an important consequence of severe lithium plating.

SELECTION OF CITATIONS
SEARCH DETAIL
...