Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters










Publication year range
1.
J Med Food ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695844

ABSTRACT

Jojoba oil, which is extracted from jojoba plant seeds that are native to North America, possesses a unique molecular structure and is distinct from other oils. Unlike typical oils, which mostly contain triglycerides, jojoba oil is composed of long monounsaturated esters, affording it exceptional properties and is valuable across cosmetics, chemicals, and pharmaceuticals. While jojoba oil is prevalent in beauty and skincare today, its seeds and oil have ancient roots in folk medicine, used for treating skin and scalp issues, wounds, sore throats, obesity, and even cancer, while enhancing immunity and fostering hair growth. Modern research underscores jojoba oil's pharmacological versatility, demonstrating antioxidant, antidiabetic, anti-acne, anti-inflammatory, antipyretic, and antibacterial properties. Notably, there has been a surge in its utilization in pharmaceuticals, particularly in topical, transdermal, and parenteral formulations. This review provides a comprehensive overview of jojoba oil, encompassing its chemical composition, extraction techniques, health advantages, and pharmaceutical application developments.

2.
Plant Sci ; 332: 111702, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37030329

ABSTRACT

Trichoderma virens is a plant beneficial fungus well-known for its biocontrol, herbicidal and growth promotion activity. Earlier, we identified HAS (HA-synthase, a terpene cyclase) and GAPDH (glyceraldehyde-3-phosphate dehydrogenase) to be involved in the production of multiple non-volatiles and non-volatile+volatile metabolites, respectively. The present study delineates the function of HAS and GAPDH in regulating herbicidal activity, using the model plant Arabidopsis thaliana. Under axenic conditions, rosette-biomass of seedlings co-cultivated with ΔHAS (HASR) and ΔGAPDH (GAPDHR) was higher than WT-Trichoderma (WTR) as well as non-colonized control (NoTR), even though the root colonization ability was reduced. However, HASR biomass was still higher than those of GAPDHR, indicating that blocking volatiles will not provide any additional contribution over non-volatile metabolites for Trichoderma-induced herbicidal activity. LC-MS analysis revealed that loss of herbicidal activity of ΔHAS/ΔGAPDH was associated with an increase in the levels of amino acids, which coincided with reduced expression levels of amino-acid catabolism and anabolism related genes in HASR/GAPDHR. RNAi-mediated suppression of an oxidoreductase gene, VDN5, specifically prevented viridin-to-viridiol conversion. Additionally, vdn5 mimics ΔHAS, in terms of amino-acid metabolism gene expression and partially abolishes the herbicidal property of WT-Trichoderma. Thus, the study provides mechanistic frame-work for better utilization of Trichoderma virens for biocontrol purposes, balancing between plant growth promotion and herbicidal activity.


Subject(s)
Arabidopsis , Herbicides , Hypocrea , Trichoderma , Arabidopsis/genetics , Herbicides/metabolism , Trichoderma/genetics , Trichoderma/metabolism , Terpenes/metabolism
3.
Microbiol Spectr ; : e0302422, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36719232

ABSTRACT

Trichoderma virens is a beneficial fungus that helps plants fight pathogens and abiotic stresses and thereby enhances crop yields. Unlike other Trichoderma spp., there are two well-defined strains (P and Q) of T. virens, classified by secondary metabolites profiling, primarily the biosynthesis of the nonribosomal, strong antimicrobial agents gliotoxin (Q) and gliovirin (P). We have studied the phenotypic and biocontrol properties of two well-studied representative isolates (T. virens Gv29-8 and T. virens GvW/IMI304061) that represent a Q strain and a P strain of T. virens, respectively. We refined the genome assembly of the P strain using nanopore technology, and we compared it with the Q strain. The differences between the genomes include gene expansion in the Q strain. T. virens Gv29-8 is weaker than GvW as a mycoparasite on the broad host-range plant pathogen Sclerotium rolfsii, and it is ineffective as a biocontrol agent when applied to pathogen-infested soil. T. virens Gv29-8 proved to be phytotoxic to Arabidopsis seedlings, whereas the effect of T. virens GvW was not major. Both strains colonized the surface and outer cortex layer of tomato roots, with about 40% higher colonization by T. virens Gv29-8. T. virens Gv29-8 induced the expression of a larger set of tomato genes than did T. virens GvW, although some tomato genes were uniquely induced in response to T. virens GvW. We studied the comparative transcriptome response of T. virens Gv29-8 and T. virens GvW to S. rolfsii. A larger set of genes was regulated in T. virens GvW than in T. virens Gv29-8 in the presence of the plant pathogen. IMPORTANCE Trichoderma virens populations that were earlier classified into two strains (P and Q) based on secondary metabolites profiling are also phenotypically and genetically distinct, with the latter being ineffective in controlling the devastating, broad host range plant pathogen Sclerotium rolfsii. The two strains also provoke distinct as well as overlapping transcriptional responses to the presence of the plant and the pathogen. This study enriches our knowledge of Trichoderma-plant-pathogen interactions and identifies novel candidate genes for further research and deployment in agriculture.

4.
Microbiol Spectr ; 10(4): e0179322, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35938791

ABSTRACT

Eremophilanes are a large group of "sesquiterpenes" produced by plants and fungi, with more than 180 compounds being known in fungi alone. Many of these compounds are phytotoxic, antimicrobial, anticancer and immunomodulators, and hence are of great economic values. Acremeremophilanes A to O have earlier been reported in a marine isolate of Acremonium sp. We report here the presence of Acremeremophilane I, G, K, N, and O, in a plant beneficial fungus Trichoderma virens, in a strain-specific manner. We also describe a novel, P strain-specific polyketide synthase (PKS) gene cluster in T. virens. This gene cluster, designated amm cluster, is absent in the genome of a Q strain of T. virens, and in other Trichoderma spp.; instead, a near identical cluster is present in the genome of the toxic mold Stachybotrys chartarum. Using gene knockout, we provide evidence that acremeremophilanes are biosynthesized via a polyketide route, and not via the mevalonate/terpene synthesis route as believed. We propose here that the 10-carbon skeleton is a product of polyketide synthase, to which a five-carbon isoprene unit is added by a prenyl transferase (PT), a gene for which is present next to the PKS gene in the genome. Based on this evidence, we propose that at least some of the eremophilanes classified in literature as sesquiterpenes (catalyzed by terpene cyclase) are actually meroterpenes (catalyzed by PKSs and PTs), and that the core moiety is not a sesquiterpene, but a hybrid polyketide/isoprene unit. IMPORTANCE The article contradicts the established fact that acremeremophilane metabolites produced by fungi are sesquiterpenes; instead, our findings suggest that at least some of these well-studied metabolites are of polyketide origin. Acremeremophilane metabolites are of medicinal significance, and the present findings have implications for the metabolic engineering of these metabolites and also their overproduction in microbial cell factories.


Subject(s)
Polyketides , Trichoderma , Carbon/metabolism , Polycyclic Sesquiterpenes , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Polyketides/metabolism , Terpenes/metabolism , Trichoderma/genetics , Trichoderma/metabolism
5.
mBio ; 13(4): e0038922, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35862794

ABSTRACT

Beneficial interaction of members of the fungal genus Trichoderma with plant roots primes the plant immune system, promoting systemic resistance to pathogen infection. Some strains of Trichoderma virens produce gliotoxin, a fungal epidithiodioxopiperazine (ETP)-type secondary metabolite that is toxic to animal cells. It induces apoptosis, prevents NF-κB activation via the inhibition of the proteasome, and has immunosuppressive properties. Gliotoxin is known to be involved in the antagonism of rhizosphere microorganisms. To investigate whether this metabolite has a role in the interaction of Trichoderma with plant roots, we compared gliotoxin-producing and nonproducing T. virens strains. Both colonize the root surface and outer layers, but they have differential effects on root growth and architecture. The responses of tomato plants to a pathogen challenge were followed at several levels: lesion development, levels of ethylene, and reactive oxygen species. The transcriptomic signature of the shoot tissue in response to root interaction with producing and nonproducing T. virens strains was monitored. Gliotoxin producers provided stronger protection against foliar pathogens, compared to nonproducing strains. This was reflected in the transcriptomic signature, which showed the induction of defense-related genes. Two markers of plant defense response, PR1 and Pti-5, were differentially induced in response to pure gliotoxin. Gliotoxin thus acts as a microbial signal, which the plant immune system recognizes, directly or indirectly, to promote a defense response. IMPORTANCE A single fungal metabolite induces far-reaching transcriptomic reprogramming in the plant, priming immune responses and defense, in contrast to its immunosuppressive effect on animal cells. While the negative effects of gliotoxin-producing Trichoderma strains on growth may be observed only under a particular set of laboratory conditions, gliotoxin-linked molecular patterns, including the potential for limited cell death, could strongly prime plant defense, even in mature soil-grown plants in which the same Trichoderma strain promotes growth.


Subject(s)
Gliotoxin , Hypocrea , Solanum lycopersicum , Trichoderma , Animals , Hypocrea/metabolism , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Plant Immunity , Plant Roots/microbiology , Trichoderma/genetics , Trichoderma/metabolism
6.
Biomol Concepts ; 13(1): 103-118, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35247235

ABSTRACT

This study aims to increase Bacillus and Streptomyces antagonistic activity against the root rot and wilt diseases of pulses caused by Macrophomina phaseolina and Fusarium oxysporum f. sp. udum, respectively. To increase antagonistic action, Bacillus subtilis BRBac4, Bacillus siamensis BRBac21, and Streptomyces cavourensis BRAcB10 were subjected to random mutagenesis using varying doses of gamma irradiation (0.5-3.0 kGy). Following the irradiation, 250 bacterial colonies were chosen at random for each antagonistic strain and their effects against pathogens were evaluated in a plate assay. The ERIC, BOX, and random amplified polymorphic studies demonstrated a clear distinction between mutant and wild-type strains. When mutants were compared to wild-type strains, they showed improved plant growth-promoting characteristics and hydrolytic enzyme activity. The disease suppression potential of the selected mutants, B. subtilis BRBac4-M6, B. siamensisi BRBac21-M10, and S. cavourensis BRAcB10-M2, was tested in green gram, black gram, and red gram. The combined inoculation of B. siamensis BRBac21-M10 and S. cavourensis BRAcB10-M2 reduced the incidence of root rot and wilt disease. The same treatment also increased the activity of the defensive enzymes peroxidase, polyphenol oxidase, and phenylalanine ammonia-lyase. These findings suggested that gamma-induced mutation can be exploited effectively to improve the biocontrol characteristics of Bacillus and Streptomyces. Following the field testing, a combined bio-formulation of these two bacteria may be utilised to address wilt and root-rot pathogens in pulses.


Subject(s)
Bacillus , Streptomyces , Bacillus/genetics , Plant Development , Plant Diseases/prevention & control , Streptomyces/genetics
8.
Microbiol Res ; 253: 126862, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34563853

ABSTRACT

Trichoderma virens produces viridin/viridiol, heptelidic (koningic) acid, several volatile sesquiterpenes and gliotoxin (Q strains) or gliovirin (P strains). We earlier reported that deletion of the terpene cyclase vir4 and a glyceraldehyde-3-phosphate dehydrogenase (GAPDH, designated as vGPD) associated with the "vir" cluster abrogated the biosynthesis of several volatile sesquiterpene metabolites. Here we show that, the deletion of this GAPDH also impairs the biosynthesis of heptelidic acid (a non-volatile sesquiterpene), viridin (steroid) and gliovirin (non-ribosomal peptide), indicating regulation of non-volatile metabolite biosynthesis by this GAPDH that is associated with a secondary metabolism gene cluster. To gain further insights into the details of this novel form of regulation, we identified the terpene cyclase gene responsible for heptelidic acid biosynthesis (hereafter designated as has1) and prove that the expression of this gene is regulated by vGPD. Interestingly, deletion of has1 impaired biosynthesis of heptelidic acid (HA), viridin and gliovirin, but not of volatile sesquiterpenes. Deletion of the vir cluster associated terpene cyclase gene (vir4), located next to the vGPD gene, did not impair biosynthesis of HA, viridin or gliovirin. We thus unveil a novel circuitry of regulation of secondary metabolism where an HA-tolerant GAPDH isoform (vGPD) regulates HA biosynthesis through the transcriptional regulation of the HA-synthase gene (which is not part of the "vir" cluster). Interestingly, impairment of HA biosynthesis leads to the down-regulation of biosynthesis of other non-volatile secondary metabolites, but not of volatile secondary metabolites. We thus provide evidence that the "vir" cluster associated, HA-tolerant GAPDH in T. virens participates in the biosynthesis of volatile sesquiterpenes as a biosynthetic enzyme, and regulates the production of non-volatile metabolites via regulation of HA biosynthesis. The orthologue of the "vir" cluster in Aspergillus oryzae was earlier reported to synthesize HA by another group. Our study thus proves that the same gene cluster can code for unrelated metabolites in different species.


Subject(s)
Glyceraldehyde-3-Phosphate Dehydrogenases , Hypocrea , Secondary Metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Hypocrea/enzymology , Sesquiterpenes/metabolism
9.
Proteins ; 89(12): 1647-1672, 2021 12.
Article in English | MEDLINE | ID: mdl-34561912

ABSTRACT

The biological and functional significance of selected Critical Assessment of Techniques for Protein Structure Prediction 14 (CASP14) targets are described by the authors of the structures. The authors highlight the most relevant features of the target proteins and discuss how well these features were reproduced in the respective submitted predictions. The overall ability to predict three-dimensional structures of proteins has improved remarkably in CASP14, and many difficult targets were modeled with impressive accuracy. For the first time in the history of CASP, the experimentalists not only highlighted that computational models can accurately reproduce the most critical structural features observed in their targets, but also envisaged that models could serve as a guidance for further studies of biologically-relevant properties of proteins.


Subject(s)
Models, Molecular , Protein Conformation , Proteins/chemistry , Software , Amino Acid Sequence , Computational Biology , Cryoelectron Microscopy , Crystallography, X-Ray , Sequence Analysis, Protein
10.
Int J Biol Macromol ; 191: 267-276, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34547313

ABSTRACT

Trichoderma virens colonizes roots and develops a symbiotic relationship with plants where the fungal partner derives nutrients from plants and offers defence, in return. Tsp1, a small secreted cysteine-rich protein, was earlier found to be upregulated in co-cultivation of T. virens with maize roots. Tsp1 is well conserved in Ascomycota division of fungi, but none of its homologs have been studied yet. We have expressed and purified recombinant Tsp1, and resolved its structure to 1.25 Å resolutions, from two crystal forms, using Se-SAD methods. The Tsp1 adopts a ß barrel fold and forms dimer in structure as well as in solution form. DALI based structure analysis revealed the structure similarity with two known fungal effector proteins: Alt a1 and PevD1. Structure and evolutionary analysis suggested that Tsp1 belongs to a novel effector protein family. Tsp1 acted as an inducer of salicylic acid mediated susceptibility in plants, rendering maize plants more susceptible to a necrotrophic pathogen Cochliobolus heterostrophus, as observed using plant defence assay and RT-qPCR analysis.


Subject(s)
Fungal Proteins/chemistry , Host-Pathogen Interactions , Hypocrea/metabolism , Evolution, Molecular , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hypocrea/pathogenicity , Molecular Dynamics Simulation , Protein Domains , Sequence Homology, Amino Acid , Zea mays/microbiology
11.
Sci Rep ; 11(1): 16536, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34400690

ABSTRACT

Gliotoxin produced by Trichoderma virens is inhibitory against various phytopathogenic fungi and bacteria. However, its stability in soil-ecosystem has not yet been well-defined. This study aimed to decipher its persistence and behaviour in growth media, irrigation water and soil ecosystems. Gliotoxin production was noticed at logarithmic growth phase and converted into bis-thiomethyl gliotoxin at late stationary growth phase of T. virens in acidic growth medium. But, no gliotoxin production was observed in neutral and alkaline growth medium. Gliotoxin was stable for several days in acidic water but degraded in alkaline water. Degradation of gliotoxin was more in unsterile soil than sterile soil and also that was higher under wet soil than dry soil. Degradation of gliotoxin was hastened by alkaline pH in wet soil but not in dry soil. Under unsterile soil conditions, high soil moisture increased the degradation of gliotoxin and the degradation of gliotoxin occurred quickly in alkaline soil (in 5 days) compared to acidic soil (in 10 days). Under sterile soil conditions, high soil moisture also enhanced the degradation of gliotoxin but level of degradation was less compared to unsterile conditions. Thus, gliotoxin stability is influenced mainly by the soil wetness, soil microbial community and pH conditions.

12.
3 Biotech ; 11(3): 144, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33708467

ABSTRACT

The filamentous fungi Trichoderma spp. are widely used for plant growth promotion and disease control. They form stable symbiosis-like relationship with roots. Unlike plant pathogens and mycorrhizae, the molecular events leading to the development of this association is not well understood. Pathogens deploy effector proteins to suppress or evade plant defence. Indirect evidences suggest that Trichoderma spp. can also deploy effector-like proteins to suppress plant defence favouring colonization of roots. Here, using computer simulation, we provide evidence that Trichoderma virens may deploy analogues of host defence proteins to "neutralize" its own effector protein to minimize damage to host tissues, as one of the mechanisms to achieve a stable symbiotic relationship with plants. We provide evidence that T. virens Bys1 protein has a structure similar to plant PR5/thaumatin-like protein and can bind Alt a 1 with a very high affinity, which might lead to the inactivation of its own effector protein. We have, for the first time, predicted a fungal protein that is a competitive inhibitor of a fungal effector protein deployed by many pathogenic fungi to suppress plant defence, and this protein/gene can potentially be used to enhance plant defence through transgenic or other approaches. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02652-8.

13.
Sci Rep ; 11(1): 553, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436923

ABSTRACT

A population exceeding 3.8 million people in the western region of 24-Parganas (South) is directly or indirectly reliant on agriculture as their primary source of livelihood. The agricultural trend shows a clear lack of multi-cropping with a drop of nearly 30% in rice cultivation during the winter season. Nearly 50% of the region is directly dependent on canals. The introduction of tidal water in the canal network provides an exceptionally economical and highly effective mode of irrigation water supply. The primary aim of the study was to identify the cartographic characteristics and channel hydraulics in the summer season. It was noted that the canals have a wide discharge range of 0.03-540.03 m3/s, average evaporation loss of 9.07 mm/day with a seepage loss ranging from 0.04 to 6.36 m3/s. The tidal water ingress quantity was calculated to be 4.17 Mm3, 5.32 Mm3, 1.88 Mm3 at Diamond Harbour sluice (Sl.), Kulpi Sl. and Kholakhali Sl. respectively. It was denoted that the augmentation of tidal backwater six times monthly would suffice the winter crop water requirement for the majority of the basins. This would result in the production of 172.13 kt which was previously 17.6 kt resulting in an increase of production by 878.01%. The per capita income would also be increased by nearly 978% for the season, resulting in the macro-socioeconomic upliftment of the region.

14.
Chem Commun (Camb) ; 56(93): 14519-14540, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33150893

ABSTRACT

Artificial metalloenzymes have been recently established as efficient alternatives to traditional transition metal catalysts. The presence of a secondary coordination sphere in artificial metalloenzymes makes them advantageous over transition metal catalysts, which rely essentially on their first coordination sphere to exhibit their catalytic activity. Recent developments on streptavidin- and avidin-based artificial metalloenzymes have made them highly chemically and genetically evolved for selective organometallic transformations. In this review, we discuss the chemo-genetic optimization of streptavidin- and avidin-based artificial metalloenzymes for the enhancement of their catalytic activities towards a wide range of synthetic transformations. Considering the high impact in vivo applications of artificial metalloenzymes, their catalytic efficacies to promote abiological reactions in intracellular as well as periplasmic environment are also discussed. Overall, this review can provide an insight to readers regarding the design and systematic optimization of strept(avidin)-based artificial metalloenzymes for specific reactions.

15.
Org Biomol Chem ; 18(43): 8886-8898, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33108794

ABSTRACT

An efficient palladium catalyzed diastereoselective addition of arylboronic acids to complex spirocyclopropyl dinitriles is developed in the presence of a catalytic amount of 4-dodecylbenzenesulphonic acid (DBSA) as a Brønsted acid surfactant in aqueous media. The protocol is also found to be highly effective when different types of nitrile compounds and organo-boron compounds are used. The overall reaction has been found to be very cost efficient since it requires low catalyst loading, mild thermal energy and short reaction time. Wide substrate scope, operational simplicity, good to excellent product yield, and use of green solvents make the reaction a practical route to transform nitrile into a keto functionality in biorelevant heterocyclic scaffolds. The scale-up synthesis of the target scaffolds can also be achieved with ease which also signifies the practicability of this protocol.

16.
Biochem Biophys Res Commun ; 529(3): 672-677, 2020 08 27.
Article in English | MEDLINE | ID: mdl-32736691

ABSTRACT

The anticancer antibiotic heptelidic acid is a sesquiterpene lactone produced by the beneficial plant fungus Trichoderma virens. This species has been separated into two strains, referred to as P and Q, based on its biosynthesis of secondary metabolites; notably, only P-strains were reported to produce heptelidic acid. While characterizing a Q-strain of T. virens containing a directed mutation in the non-ribosomal peptide synthetase encoding gene Tex7, the appearance of an unknown compound in anomalously large quantities was visualized by TLC. Using a combination of HPLC, LC-MS/MS, and NMR spectroscopy, this compound was identified as heptelidic acid. This discovery alters the strain classification structure of T. virens. Additionally, the Tex7 mutants inhibited growth of maize seedlings, while retaining the ability to induce systemic resistance against the foliar fungal pathogen, Cochliobolus heterostrophus.


Subject(s)
Antibiotics, Antineoplastic/metabolism , Fungal Proteins/genetics , Peptide Synthases/genetics , Trichoderma/genetics , Fungal Proteins/metabolism , Gene Deletion , Genes, Fungal , Multigene Family , Peptide Synthases/metabolism , Sesquiterpenes/metabolism , Trichoderma/metabolism , Zea mays/growth & development , Zea mays/microbiology
17.
Protein Expr Purif ; 175: 105697, 2020 11.
Article in English | MEDLINE | ID: mdl-32681951

ABSTRACT

Trichoderma virens genome harbors two isoforms of GAPDH, one (gGPD) involved in glycolysis and the other one (vGPD) in secondary metabolism. vGPD is expressed as part of the "vir" cluster responsible for the biosynthesis of volatile sesquiterpenes. The secondary metabolism-associated GAPDH is tolerant to the anti-cancer metabolite heptelidic acid (HA), produced by T. virens. Characterizing the HA-tolerant form of GAPDH, thus has implications in cancer therapy. In order to get insight into the mechanism of HA-tolerance of vGPD, we have purified recombinant form of this protein. The protein displays biochemical and biophysical characteristics analogous to the gGPD isoform. It exists as a tetramer with Tm of about 56.5 °C, and displays phosphorylation enzyme activity with Km and Kcat of 0.38 mM and 2.55 sec-1, respectively. The protein weakly binds to the sequence upstream of the vir4 gene that codes for the core enzyme (a terpene cyclase) of the "vir" cluster. The EMSA analysis indicates that vGPD may not act as a transcription factor driving the "vir" cluster, at least not by directly binding to the promoter region. We also succeeded in obtaining small crystals of this protein. We have constructed structural models of vGPD and gGPD of T. virens. In silico constrained docking analysis reveals weaker binding of heptelidic acid in vGPD, compared to gGPD protein.


Subject(s)
Fungal Proteins , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) , Hypocrea/genetics , Molecular Docking Simulation , Enzyme Stability , Fungal Proteins/biosynthesis , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/isolation & purification , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/biosynthesis , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/chemistry , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/genetics , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/isolation & purification , Hypocrea/enzymology , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Sesquiterpenes/chemistry
18.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 6): 257-262, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32510466

ABSTRACT

Small secreted cysteine-rich proteins (SSCPs) from fungi play an important role in fungi-host interactions. The plant-beneficial fungi Trichoderma spp. are in use worldwide as biocontrol agents and protect the host plant from soil-borne as well as foliar pathogens. Recently, a novel SSCP, Tsp1, has been identified in the secreted protein pool of T. virens and is overinduced upon its interaction with the roots of the maize plant. The protein was observed to be well conserved in the Ascomycota division of fungi, and its homologs are present in many plant-pathogenic fungi such as Fusarium oxysporum and Magnaporthe oryzae. However, none of these homologs have yet been characterized. Recombinant Tsp1 protein has been expressed and purified using an Escherichia coli expression system. The protein, with four conserved cysteines, forms a dimer in solution as observed by size-exclusion chromatography. The dimerization, however, does not involve disulfide bonds. Circular-dichroism data suggested that the protein has a ß-strand-rich secondary structure that matched well with the secondary structure predicted using bioinformatics methods. The protein was crystallized using sodium malonate as a precipitant. The crystals diffracted X-rays to 1.7 Šresolution and belonged to the orthorhombic space group P212121 (Rmeas = 5.4%), with unit-cell parameters a = 46.3, b = 67.0, c = 173.2 Å. The Matthews coefficient (VM) of the crystal is 2.32 Å3 Da-1, which corresponds to nearly 47% solvent content with four subunits of Tsp1 protein in the asymmetric unit. This is the first report of the structural study of any homolog of the novel Tsp1 protein. These structural studies will help in understanding the classification and function of the protein.


Subject(s)
Cysteine/chemistry , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Hypocrea/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Cysteine/metabolism , Fungal Proteins/genetics , Fungal Proteins/isolation & purification , Models, Molecular , Protein Conformation , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Sequence Homology
19.
Front Microbiol ; 11: 1030, 2020.
Article in English | MEDLINE | ID: mdl-32595612

ABSTRACT

Trichoderma virens is a commercial biofungicide used in agriculture. We have earlier isolated a mutant of T. virens using gamma ray-induced mutagenesis. This mutant, designated as M7, is defective in morphogenesis, secondary metabolism, and mycoparasitism. The mutant does not produce conidia, and the colony is hydrophilic. M7 cannot utilize cellulose and chitin as a sole carbon source and is unable to parasitize the plant pathogens Rhizoctonia solani and Pythium aphanidermatum in confrontation assay. Several volatile (germacrenes, beta-caryophyllene, alloaromadendrene, gamma-muurolene) and non-volatile (viridin, viridiol, gliovirin, heptelidic acid) metabolites are not detected in M7. In transcriptome analysis, many genes related to secondary metabolism, carbohydrate metabolism, hydrophobicity, and transportation, among others, were found to be downregulated in the mutant. Using whole genome sequencing, we identified five deletions in the mutant genome, totaling about 250 kb (encompassing 71 predicted ORFs), which was confirmed by PCR. This study provides novel insight into genetics of morphogenesis, secondary metabolism, and mycoparasitism and eventually could lead to the identification of novel regulators of beneficial traits in plant beneficial fungi Trichoderma spp. We also suggest that this mutant can be developed as a microbial cell factory for the production of secondary metabolites and proteins.

20.
J Control Release ; 322: 357-374, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32243981

ABSTRACT

Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic subtype of breast cancer showing non-responsiveness to most available therapeutic options. Therefore, smart therapeutic approaches to selectively transport and target TNBCs are required. Herein, we developed thymoquinone (TQ)-loaded, hyaluronic acid (HA)-conjugated Pluronic® P123 and F127 copolymer nanoparticles (HA-TQ-Nps) as a selective drug-carrying vehicle to deliver anticancer phytochemical TQ to TNBC cells. The mean size of nanoparticles was around 19.3 ± 3.2 nm. and they were stable at room temperature up to 4 months. HA-TQ-Nps were immensely cytotoxic towards TNBC cells but did not show the toxic effect on normal cells. Detailed investigations also demonstrated its pro-apoptotic, anti-metastatic and anti-angiogenic activity. In-depth mechanistic studies highlighted that HA-TQ-Nps retarded cell migration of TNBC cells through up-regulation of microRNA-361 which in turn down-regulated Rac1 and RhoA mediated cell migration and also perturbed the cancer cell migration under the influence of the autocrine effect of VEGF-A. Moreover, HA-TQ-Np-treatment also perturbed tumor-induced vascularization by reducing the secretion of VEGF-A. The anti-metastatic and anti-angiogenic activity of HA-TQ-Nps was found to be evident in both MDA-MB-231 xenograft chick embryos and 4T1-mammary solid tumor model in syngeneic mice. Thus, an innovative targeted nano-therapeutic approach is being established to reduce the tumor burden and inhibit metastasis and angiogenesis simultaneously for better management of TNBC.


Subject(s)
MicroRNAs , Nanoparticles , Triple Negative Breast Neoplasms , Animals , Benzoquinones , Cell Line, Tumor , Chick Embryo , Humans , Hyaluronic Acid , Mice , Poloxamer , Triple Negative Breast Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...