Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
ArXiv ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38711436

ABSTRACT

In chest X-ray (CXR) image analysis, rule-based systems are usually employed to extract labels from reports, but concerns exist about label quality. These datasets typically offer only presence labels, sometimes with binary uncertainty indicators, which limits their usefulness. In this work, we present MAPLEZ (Medical report Annotations with Privacy-preserving Large language model using Expeditious Zero shot answers), a novel approach leveraging a locally executable Large Language Model (LLM) to extract and enhance findings labels on CXR reports. MAPLEZ extracts not only binary labels indicating the presence or absence of a finding but also the location, severity, and radiologists' uncertainty about the finding. Over eight abnormalities from five test sets, we show that our method can extract these annotations with an increase of 5 percentage points (pp) in F1 score for categorical presence annotations and more than 30 pp increase in F1 score for the location annotations over competing labelers. Additionally, using these improved annotations in classification supervision, we demonstrate substantial advancements in model quality, with an increase of 1.7 pp in AUROC over models trained with annotations from the state-of-the-art approach. We share code and annotations.

2.
ArXiv ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38529074

ABSTRACT

Pheochromocytomas and Paragangliomas (PPGLs) are rare adrenal and extra-adrenal tumors which have the potential to metastasize. For the management of patients with PPGLs, CT is the preferred modality of choice for precise localization and estimation of their progression. However, due to the myriad variations in size, morphology, and appearance of the tumors in different anatomical regions, radiologists are posed with the challenge of accurate detection of PPGLs. Since clinicians also need to routinely measure their size and track their changes over time across patient visits, manual demarcation of PPGLs is quite a time-consuming and cumbersome process. To ameliorate the manual effort spent for this task, we propose an automated method to detect PPGLs in CT studies via a proxy segmentation task. As only weak annotations for PPGLs in the form of prospectively marked 2D bounding boxes on an axial slice were available, we extended these 2D boxes into weak 3D annotations and trained a 3D full-resolution nnUNet model to directly segment PPGLs. We evaluated our approach on a dataset consisting of chest-abdomen-pelvis CTs of 255 patients with confirmed PPGLs. We obtained a precision of 70% and sensitivity of 64.1% with our proposed approach when tested on 53 CT studies. Our findings highlight the promising nature of detecting PPGLs via segmentation, and furthers the state-of-the-art in this exciting yet challenging area of rare cancer management.

3.
ArXiv ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38529076

ABSTRACT

Multi-parametric MRI of the body is routinely acquired for the identification of abnormalities and diagnosis of diseases. However, a standard naming convention for the MRI protocols and associated sequences does not exist due to wide variations in imaging practice at institutions and myriad MRI scanners from various manufacturers being used for imaging. The intensity distributions of MRI sequences differ widely as a result, and there also exists information conflicts related to the sequence type in the DICOM headers. At present, clinician oversight is necessary to ensure that the correct sequence is being read and used for diagnosis. This poses a challenge when specific series need to be considered for building a cohort for a large clinical study or for developing AI algorithms. In order to reduce clinician oversight and ensure the validity of the DICOM headers, we propose an automated method to classify the 3D MRI sequence acquired at the levels of the chest, abdomen, and pelvis. In our pilot work, our 3D DenseNet-121 model achieved an F1 score of 99.5% at differentiating 5 common MRI sequences obtained by three Siemens scanners (Aera, Verio, Biograph mMR). To the best of our knowledge, we are the first to develop an automated method for the 3D classification of MRI sequences in the chest, abdomen, and pelvis, and our work has outperformed the previous state-of-the-art MRI series classifiers.

4.
Comput Med Imaging Graph ; 112: 102335, 2024 03.
Article in English | MEDLINE | ID: mdl-38271870

ABSTRACT

Segmentation of multiple pelvic structures in MRI volumes is a prerequisite for many clinical applications, such as sarcopenia assessment, bone density measurement, and muscle-to-fat volume ratio estimation. While many CT-specific datasets and automated CT-based multi-structure pelvis segmentation methods exist, there are few MRI-specific multi-structure segmentation methods in literature. In this pilot work, we propose a lightweight and annotation-free pipeline to synthetically translate T2 MRI volumes of the pelvis to CT, and subsequently leverage an existing CT-only tool called TotalSegmentator to segment 8 pelvic structures in the generated CT volumes. The predicted masks were then mapped back to the original MR volumes as segmentation masks. We compared the predicted masks against the expert annotations of the public TCGA-UCEC dataset and an internal dataset. Experiments demonstrated that the proposed pipeline achieved Dice measures ≥65% for 8 pelvic structures in T2 MRI. The proposed pipeline is an alternative method to obtain multi-organ and structure segmentations without being encumbered by time-consuming manual annotations. By exploiting the significant research progress in CTs, it is possible to extend the proposed pipeline to other MRI sequences in principle. Our research bridges the chasm between the current CT-based multi-structure segmentation and MRI-based segmentation. The manually segmented structures in the TCGA-UCEC dataset are publicly available.


Subject(s)
Image Processing, Computer-Assisted , Pelvis , Image Processing, Computer-Assisted/methods , Pelvis/diagnostic imaging , Tomography, X-Ray Computed , Magnetic Resonance Imaging/methods
5.
Abdom Radiol (NY) ; 49(2): 642-650, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38091064

ABSTRACT

PURPOSE: To detect and assess abdominal aortic aneurysms (AAAs) on CT in a large asymptomatic adult patient population using fully-automated deep learning software. MATERIALS AND METHODS: The abdominal aorta was segmented using a fully-automated deep learning model trained on 66 manually-segmented abdominal CT scans from two datasets. The axial diameters of the segmented aorta were extracted to detect the presence of AAAs-maximum axial aortic diameter greater than 3 cm were labeled as AAA positive. The trained system was then externally-validated on CT colonography scans of 9172 asymptomatic outpatients (mean age, 57 years) referred for colorectal cancer screening. Using a previously-validated automated calcified atherosclerotic plaque detector, we correlated abdominal aortic Agatston and volume scores with the presence of AAA. RESULTS: The deep learning software detected AAA on the external validation dataset with a sensitivity, specificity, and AUC of 96%, (95% CI 89%, 100%), 96% (96%, 97%), and 99% (98%, 99%) respectively. The Agatston and volume scores of reported AAA-positive cases were statistically significantly greater than those of reported AAA-negative cases (p < 0.0001). Using plaque alone as a AAA detector, at a threshold Agatston score of 2871, the sensitivity and specificity were 84% (73%, 94%) and 87% (86%, 87%), respectively. CONCLUSION: Fully-automated detection and assessment of AAA on CT is feasible and accurate. There was a strong statistical association between the presence of AAA and the quantity of abdominal aortic calcified atherosclerotic plaque.


Subject(s)
Aortic Aneurysm, Abdominal , Plaque, Atherosclerotic , Adult , Humans , Middle Aged , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/epidemiology , Aorta, Abdominal/diagnostic imaging , Tomography, X-Ray Computed , Sensitivity and Specificity
6.
Abdom Radiol (NY) ; 49(1): 173-181, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37906271

ABSTRACT

RATIONALE AND OBJECTIVES: Measuring small kidney stones on CT is a time-consuming task often neglected. Volumetric assessment provides a better measure of size than linear dimensions. Our objective is to analyze the growth rate and prognosis of incidental kidney stones in asymptomatic patients on CT. MATERIALS AND METHODS: This retrospective study included 4266 scans from 2030 asymptomatic patients who underwent two or more nonenhanced CT scans for colorectal screening between 2004 and 2016. The DL software identified and measured the volume, location, and attenuation of 883 stones. The corresponding scans were manually evaluated, and patients without follow-up were excluded. At each follow-up, the stones were categorized as new, growing, persistent, or resolved. Stone size (volume and diameter), attenuation, and location were correlated with the outcome and growth rates of the stones. RESULTS: The stone cohort comprised 407 scans from 189 (M: 124, F: 65, median age: 55.4 years) patients. The median number of stones per scan was 1 (IQR: [1, 2]). The median stone volume was 17.1 mm3 (IQR: [7.4, 43.6]) and the median peak attenuation was 308 HU (IQR: [204, 532]. The 189 initial scans contained 291stones; 91 (31.3%) resolved, 142 (48.8%) grew, and 58 (19.9) remained persistent at the first follow-up. At the second follow-up (for 27 patients with 2 follow-ups), 14/44 (31.8%) stones had resolved, 19/44 (43.2%) grew and 11/44 (25%) were persistent. The median growth rate of growing stones was 3.3 mm3/year, IQR: [1.4,7.4]. Size and attenuation had a moderate correlation (Spearman rho 0.53, P < .001 for volume, and 0.50 P < .001 for peak attenuation) with the growth rate. Growing and persistent stones had significantly greater maximum axial diameter (2.7 vs 2.3 mm, P =.047) and peak attenuation (300 vs 258 HU, P =.031) CONCLUSION: We report a 12.7% prevalence of incidental kidney stones in asymptomatic adults, of which about half grew during follow-up with a median growth rate of about 3.3 mm3/year.


Subject(s)
Kidney Calculi , Adult , Humans , Middle Aged , Follow-Up Studies , Retrospective Studies , Kidney Calculi/diagnostic imaging , Tomography, X-Ray Computed/methods , Kidney
7.
Radiology ; 309(1): e231147, 2023 10.
Article in English | MEDLINE | ID: mdl-37815442

ABSTRACT

Background Large language models (LLMs) such as ChatGPT, though proficient in many text-based tasks, are not suitable for use with radiology reports due to patient privacy constraints. Purpose To test the feasibility of using an alternative LLM (Vicuna-13B) that can be run locally for labeling radiography reports. Materials and Methods Chest radiography reports from the MIMIC-CXR and National Institutes of Health (NIH) data sets were included in this retrospective study. Reports were examined for 13 findings. Outputs reporting the presence or absence of the 13 findings were generated by Vicuna by using a single-step or multistep prompting strategy (prompts 1 and 2, respectively). Agreements between Vicuna outputs and CheXpert and CheXbert labelers were assessed using Fleiss κ. Agreement between Vicuna outputs from three runs under a hyperparameter setting that introduced some randomness (temperature, 0.7) was also assessed. The performance of Vicuna and the labelers was assessed in a subset of 100 NIH reports annotated by a radiologist with use of area under the receiver operating characteristic curve (AUC). Results A total of 3269 reports from the MIMIC-CXR data set (median patient age, 68 years [IQR, 59-79 years]; 161 male patients) and 25 596 reports from the NIH data set (median patient age, 47 years [IQR, 32-58 years]; 1557 male patients) were included. Vicuna outputs with prompt 2 showed, on average, moderate to substantial agreement with the labelers on the MIMIC-CXR (κ median, 0.57 [IQR, 0.45-0.66] with CheXpert and 0.64 [IQR, 0.45-0.68] with CheXbert) and NIH (κ median, 0.52 [IQR, 0.41-0.65] with CheXpert and 0.55 [IQR, 0.41-0.74] with CheXbert) data sets, respectively. Vicuna with prompt 2 performed at par (median AUC, 0.84 [IQR, 0.74-0.93]) with both labelers on nine of 11 findings. Conclusion In this proof-of-concept study, outputs of the LLM Vicuna reporting the presence or absence of 13 findings on chest radiography reports showed moderate to substantial agreement with existing labelers. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Cai in this issue.


Subject(s)
Camelids, New World , Radiology , United States , Humans , Male , Animals , Aged , Middle Aged , Privacy , Feasibility Studies , Retrospective Studies , Language
8.
J Med Imaging (Bellingham) ; 10(4): 044006, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37564098

ABSTRACT

Purpose: We aim to evaluate the performance of radiomic biopsy (RB), best-fit bounding box (BB), and a deep-learning-based segmentation method called no-new-U-Net (nnU-Net), compared to the standard full manual (FM) segmentation method for predicting benign and malignant lung nodules using a computed tomography (CT) radiomic machine learning model. Materials and Methods: A total of 188 CT scans of lung nodules from 2 institutions were used for our study. One radiologist identified and delineated all 188 lung nodules, whereas a second radiologist segmented a subset (n=20) of these nodules. Both radiologists employed FM and RB segmentation methods. BB segmentations were generated computationally from the FM segmentations. The nnU-Net, a deep-learning-based segmentation method, performed automatic nodule detection and segmentation. The time radiologists took to perform segmentations was recorded. Radiomic features were extracted from each segmentation method, and models to predict benign and malignant lung nodules were developed. The Kruskal-Wallis and DeLong tests were used to compare segmentation times and areas under the curve (AUC), respectively. Results: For the delineation of the FM, RB, and BB segmentations, the two radiologists required a median time (IQR) of 113 (54 to 251.5), 21 (9.25 to 38), and 16 (12 to 64.25) s, respectively (p=0.04). In dataset 1, the mean AUC (95% CI) of the FM, RB, BB, and nnU-Net model were 0.964 (0.96 to 0.968), 0.985 (0.983 to 0.987), 0.961 (0.956 to 0.965), and 0.878 (0.869 to 0.888). In dataset 2, the mean AUC (95% CI) of the FM, RB, BB, and nnU-Net model were 0.717 (0.705 to 0.729), 0.919 (0.913 to 0.924), 0.699 (0.687 to 0.711), and 0.644 (0.632 to 0.657). Conclusion: Radiomic biopsy-based models outperformed FM and BB models in prediction of benign and malignant lung nodules in two independent datasets while deep-learning segmentation-based models performed similarly to FM and BB. RB could be a more efficient segmentation method, but further validation is needed.

9.
ArXiv ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37502627

ABSTRACT

Despite the reduction in turn-around times in radiology reporting with the use of speech recognition software, persistent communication errors can significantly impact the interpretation of radiology reports. Pre-filling a radiology report holds promise in mitigating reporting errors, and despite multiple efforts in literature to generate comprehensive medical reports, there lacks approaches that exploit the longitudinal nature of patient visit records in the MIMIC-CXR dataset. To address this gap, we propose to use longitudinal multi-modal data, i.e., previous patient visit CXR, current visit CXR, and the previous visit report, to pre-fill the "findings" section of the patient's current visit. We first gathered the longitudinal visit information for 26,625 patients from the MIMIC-CXR dataset, and created a new dataset called Longitudinal-MIMIC. With this new dataset, a transformer-based model was trained to capture the multi-modal longitudinal information from patient visit records (CXR images + reports) via a cross-attention-based multi-modal fusion module and a hierarchical memory-driven decoder. In contrast to previous works that only uses current visit data as input to train a model, our work exploits the longitudinal information available to pre-fill the "findings" section of radiology reports. Experiments show that our approach outperforms several recent approaches. Code will be published at https://github.com/CelestialShine/Longitudinal-Chest-X-Ray.

10.
Sci Rep ; 13(1): 11005, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37419945

ABSTRACT

We propose an interpretable and scalable model to predict likely diagnoses at an encounter based on past diagnoses and lab results. This model is intended to aid physicians in their interaction with the electronic health records (EHR). To accomplish this, we retrospectively collected and de-identified EHR data of 2,701,522 patients at Stanford Healthcare over a time period from January 2008 to December 2016. A population-based sample of patients comprising 524,198 individuals (44% M, 56% F) with multiple encounters with at least one frequently occurring diagnosis codes were chosen. A calibrated model was developed to predict ICD-10 diagnosis codes at an encounter based on the past diagnoses and lab results, using a binary relevance based multi-label modeling strategy. Logistic regression and random forests were tested as the base classifier, and several time windows were tested for aggregating the past diagnoses and labs. This modeling approach was compared to a recurrent neural network based deep learning method. The best model used random forest as the base classifier and integrated demographic features, diagnosis codes, and lab results. The best model was calibrated and its performance was comparable or better than existing methods in terms of various metrics, including a median AUROC of 0.904 (IQR [0.838, 0.954]) over 583 diseases. When predicting the first occurrence of a disease label for a patient, the median AUROC with the best model was 0.796 (IQR [0.737, 0.868]). Our modeling approach performed comparably as the tested deep learning method, outperforming it in terms of AUROC (p < 0.001) but underperforming in terms of AUPRC (p < 0.001). Interpreting the model showed that the model uses meaningful features and highlights many interesting associations among diagnoses and lab results. We conclude that the multi-label model performs comparably with RNN based deep learning model while offering simplicity and potentially superior interpretability. While the model was trained and validated on data obtained from a single institution, its simplicity, interpretability and performance makes it a promising candidate for deployment.


Subject(s)
Electronic Health Records , Neural Networks, Computer , Humans , Retrospective Studies , Forecasting , Logistic Models
11.
J Endourol ; 37(8): 948-955, 2023 08.
Article in English | MEDLINE | ID: mdl-37310890

ABSTRACT

Purpose: Use deep learning (DL) to automate the measurement and tracking of kidney stone burden over serial CT scans. Materials and Methods: This retrospective study included 259 scans from 113 symptomatic patients being treated for urolithiasis at a single medical center between 2006 and 2019. These patients underwent a standard low-dose noncontrast CT scan followed by ultra-low-dose CT scans limited to the level of the kidneys. A DL model was used to detect, segment, and measure the volume of all stones in both initial and follow-up scans. The stone burden was characterized by the total volume of all stones in a scan (SV). The absolute and relative change of SV, (SVA and SVR, respectively) over serial scans were computed. The automated assessments were compared with manual assessments using concordance correlation coefficient (CCC), and their agreement was visualized using Bland-Altman and scatter plots. Results: Two hundred twenty-eight out of 233 scans with stones were identified by the automated pipeline; per-scan sensitivity was 97.8% (95% confidence interval [CI]: 96.0-99.7). The per-scan positive predictive value was 96.6% (95% CI: 94.4-98.8). The median SV, SVA, and SVR were 476.5 mm3, -10 mm3, and 0.89, respectively. After removing outliers outside the 5th and 95th percentiles, the CCC measuring agreement on SV, SVA, and SVR were 0.995 (0.992-0.996), 0.980 (0.972-0.986), and 0.915 (0.881-0.939), respectively Conclusions: The automated DL-based measurements showed good agreement with the manual assessments of the stone burden and its interval change on serial CT scans.


Subject(s)
Deep Learning , Kidney Calculi , Urolithiasis , Humans , Retrospective Studies , Kidney Calculi/diagnostic imaging , Tomography, X-Ray Computed/methods
12.
medRxiv ; 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36909593

ABSTRACT

Lung Cancer is the leading cause of cancer mortality in the U.S. The effectiveness of standard treatments, including surgery, chemotherapy or radiotherapy, depends on several factors like type and stage of cancer, with the survival rate being much worse for later cancer stages. The National Lung Screening Trial (NLST) established that patients screened using low-dose Computed Tomography (CT) had a 15 to 20 percent lower risk of dying from lung cancer than patients screened using chest X-rays. While CT excelled at detecting small early stage malignant nodules, a large proportion of patients (> 25%) screened positive and only a small fraction (< 10%) of these positive screens actually had or developed cancer in the subsequent years. We developed a model to distinguish between high and low risk patients among the positive screens, predicting the likelihood of having or developing lung cancer at the current time point or in subsequent years non-invasively, based on current and previous CT imaging data. However, most of the nodules in NLST are very small, and nodule segmentations or even precise locations are unavailable. Our model comprises two stages: the first stage is a neural network model trained on the Lung Image Database Consortium (LIDC-IDRI) cohort which detects nodules and assigns them malignancy scores. The second part of our model is a boosted tree which outputs a cancer probability for a patient based on the nodule information (location and malignancy score) predicted by the first stage. Our model, built on a subset of the NLST cohort (n = 1138) shows excellent performance, achieving an area under the receiver operating characteristics curve (ROC AUC) of 0.85 when predicting based on CT images from all three time points available in the NLST dataset.

13.
Commun Med (Lond) ; 3(1): 44, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36991216

ABSTRACT

BACKGROUND: The introduction of deep learning in both imaging and genomics has significantly advanced the analysis of biomedical data. For complex diseases such as cancer, different data modalities may reveal different disease characteristics, and the integration of imaging with genomic data has the potential to unravel additional information than when using these data sources in isolation. Here, we propose a DL framework that combines these two modalities with the aim to predict brain tumor prognosis. METHODS: Using two separate glioma cohorts of 783 adults and 305 pediatric patients we developed a DL framework that can fuse histopathology images with gene expression profiles. Three strategies for data fusion were implemented and compared: early, late, and joint fusion. Additional validation of the adult glioma models was done on an independent cohort of 97 adult patients. RESULTS: Here we show that the developed multimodal data models achieve better prediction results compared to the single data models, but also lead to the identification of more relevant biological pathways. When testing our adult models on a third brain tumor dataset, we show our multimodal framework is able to generalize and performs better on new data from different cohorts. Leveraging the concept of transfer learning, we demonstrate how our pediatric multimodal models can be used to predict prognosis for two more rare (less available samples) pediatric brain tumors. CONCLUSIONS: Our study illustrates that a multimodal data fusion approach can be successfully implemented and customized to model clinical outcome of adult and pediatric brain tumors.


An increasing amount of complex patient data is generated when treating patients with cancer, including histopathology data (where the appearance of a tumor is examined under a microscope) and molecular data (such as analysis of a tumor's genetic material). Computational methods to integrate these data types might help us to predict outcomes in patients with cancer. Here, we propose a deep learning method which involves computer software learning from patterns in the data, to combine histopathology and molecular data to predict outcomes in patients with brain cancers. Using three cohorts of patients, we show that our method combining the different datasets performs better than models using one data type. Methods like ours might help clinicians to better inform patients about their prognosis and make decisions about their care.

14.
Int J Radiat Biol ; 99(8): 1291-1300, 2023.
Article in English | MEDLINE | ID: mdl-36735963

ABSTRACT

The era of high-throughput techniques created big data in the medical field and research disciplines. Machine intelligence (MI) approaches can overcome critical limitations on how those large-scale data sets are processed, analyzed, and interpreted. The 67th Annual Meeting of the Radiation Research Society featured a symposium on MI approaches to highlight recent advancements in the radiation sciences and their clinical applications. This article summarizes three of those presentations regarding recent developments for metadata processing and ontological formalization, data mining for radiation outcomes in pediatric oncology, and imaging in lung cancer.


Subject(s)
Artificial Intelligence , Lung Neoplasms , Child , Humans , Big Data , Data Mining
15.
Cell Rep Methods ; 3(1): 100392, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36814838

ABSTRACT

Despite the abundance of multimodal data, suitable statistical models that can improve our understanding of diseases with genetic underpinnings are challenging to develop. Here, we present SparseGMM, a statistical approach for gene regulatory network discovery. SparseGMM uses latent variable modeling with sparsity constraints to learn Gaussian mixtures from multiomic data. By combining coexpression patterns with a Bayesian framework, SparseGMM quantitatively measures confidence in regulators and uncertainty in target gene assignment by computing gene entropy. We apply SparseGMM to liver cancer and normal liver tissue data and evaluate discovered gene modules in an independent single-cell RNA sequencing (scRNA-seq) dataset. SparseGMM identifies PROCR as a regulator of angiogenesis and PDCD1LG2 and HNF4A as regulators of immune response and blood coagulation in cancer. Furthermore, we show that more genes have significantly higher entropy in cancer compared with normal liver. Among high-entropy genes are key multifunctional components shared by critical pathways, including p53 and estrogen signaling.


Subject(s)
Gene Expression Profiling , Liver Neoplasms , Humans , Bayes Theorem , Gene Regulatory Networks , Liver Neoplasms/genetics
16.
Patterns (N Y) ; 4(1): 100657, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36699734

ABSTRACT

Topological data analysis provides tools to capture wide-scale structural shape information in data. Its main method, persistent homology, has found successful applications to various machine-learning problems. Despite its recent gain in popularity, much of its potential for medical image analysis remains undiscovered. We explore the prominent learning problems on thoracic radiographic images of lung tumors for which persistent homology improves radiomic-based learning. It turns out that our topological features well capture complementary information important for benign versus malignant and adenocarcinoma versus squamous cell carcinoma tumor prediction while contributing less consistently to small cell versus non-small cell-an interesting result in its own right. Furthermore, while radiomic features are better for predicting malignancy scores assigned by expert radiologists through visual inspection, we find that topological features are better for predicting more accurate histology assessed through long-term radiology review, biopsy, surgical resection, progression, or response.

17.
Appl Biochem Biotechnol ; 195(4): 2332-2358, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35852756

ABSTRACT

In recent times, East Kolkata Wetlands (EKW), a designated Ramsar site in the eastern part of megacity Kolkata, has been threatened by toxic heavy metal (HM) pollution. Besides being a natural wetland supporting biodiversity, EKW serves as a significant food basket for the city. For assessing the magnitude of HM pollution in this wetland, the three most cultivated food crops of EKW, namely Lagenaria siceraria (bottle gourd), Abelmoschus esculentus (ladies' fingers), and Zea mays (maize), as well as the ambient soil samples, were collected during premonsoon, monsoon, and postmonsoon for 2 consecutive years (2016 and 2017). Predominant HMs like cadmium (Cd), chromium (Cr), mercury (Hg), and lead (Pb) were analyzed in the roots and edible parts of these plants, as well as in the ambient soil to evaluate the bioaccumulation factor (BF) and translocation factor (TF) of each HM in the three vegetables. It was observed that the HM content in the food crop species followed the order Z. mays > L. siceraria > A. esculentus. HMs accumulated in all three vegetables as per the order Pb > Cd > Cr > Hg. Monsoon seems to be threatening in terms of bioaccumulation and translocation of HMs as both BF and TF were highest in this season irrespective of the plant species. Hence it demands critical monitoring of HM pollution levels in this wetland and subsequent ecorestoration through distinctive plant growth-promoting rhizobacteria (PGPR)-assisted co-cultivation of these food crops with low-metal-accumulating, deep-rooted, high-biomass-yielding, and bioenergy-producing perennial grass species for minimizing HM intake.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Humans , Vegetables , Cadmium , Wetlands , Seasons , Bioaccumulation , Lead , Chromium , Crops, Agricultural , Soil , Environmental Monitoring
18.
Med Image Comput Comput Assist Interv ; 14224: 189-198, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38501075

ABSTRACT

Despite the reduction in turn-around times in radiology reporting with the use of speech recognition software, persistent communication errors can significantly impact the interpretation of radiology reports. Pre-filling a radiology report holds promise in mitigating reporting errors, and despite multiple efforts in literature to generate comprehensive medical reports, there lacks approaches that exploit the longitudinal nature of patient visit records in the MIMIC-CXR dataset. To address this gap, we propose to use longitudinal multi-modal data, i.e., previous patient visit CXR, current visit CXR, and the previous visit report, to pre-fill the "findings" section of the patient's current visit. We first gathered the longitudinal visit information for 26,625 patients from the MIMIC-CXR dataset, and created a new dataset called Longitudinal-MIMIC. With this new dataset, a transformer-based model was trained to capture the multi-modal longitudinal information from patient visit records (CXR images + reports) via a cross-attention-based multi-modal fusion module and a hierarchical memory-driven decoder. In contrast to previous works that only uses current visit data as input to train a model, our work exploits the longitudinal information available to pre-fill the "findings" section of radiology reports. Experiments show that our approach outperforms several recent approaches by ≥3% on F1 score, and ≥2% for BLEU-4, METEOR and ROUGE-L respectively. Code will be published at https://github.com/CelestialShine/Longitudinal-Chest-X-Ray.

19.
Cell Stress Chaperones ; 27(6): 619-631, 2022 11.
Article in English | MEDLINE | ID: mdl-36169889

ABSTRACT

Proteome imbalance can lead to protein misfolding and aggregation which is associated with pathologies. Protein aggregation can also be an active, organized process and can be exploited by cells as a survival strategy. In adverse conditions, it is beneficial to deposit the proteins in a condensate rather degrading and resynthesizing. Membraneless organelles (MLOs) are biological condensates formed through liquid-liquid phase separation (LLPS), involving cellular components such as nucleic acids and proteins. LLPS is a regulated process, which when perturbed, can undergo a transition from a physiological liquid condensate to pathological solid-like protein aggregates. To understand how the MLO-associated proteins (MLO-APs) behave during aging, we performed a comparative meta-analysis with age-related proteome of C. elegans. We found that the MLO-APs are highly abundant throughout the lifespan in wild-type and long-lived daf-2 mutant animals. Interestingly, they are aggregating more in long-lived mutant animals compared to the age matched wild-type and short-lived daf-16 and hsf-1 mutant animals. GO term analysis revealed that the cell cycle and embryonic development are among the top enriched processes in addition to RNP components in aggregated proteome. Considering antagonistic pleotropic nature of these developmental genes and post mitotic status of C. elegans, we assume that these proteins phase transit during post development. As the organism ages, these MLO-APs either mature to become more insoluble or dissolve in uncontrolled manner. However, in the long-lived daf-2 mutant animals, the MLOs may attain protective states due to extended availability and association of molecular chaperones.


Subject(s)
Caenorhabditis elegans , Proteome , Animals , Caenorhabditis elegans/metabolism , Proteome/metabolism , Organelles/metabolism , Biomolecular Condensates , Protein Aggregates
20.
Sci Adv ; 8(32): eabq6147, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35960806

ABSTRACT

An estimated 3 billion people lack access to dermatological care globally. Artificial intelligence (AI) may aid in triaging skin diseases and identifying malignancies. However, most AI models have not been assessed on images of diverse skin tones or uncommon diseases. Thus, we created the Diverse Dermatology Images (DDI) dataset-the first publicly available, expertly curated, and pathologically confirmed image dataset with diverse skin tones. We show that state-of-the-art dermatology AI models exhibit substantial limitations on the DDI dataset, particularly on dark skin tones and uncommon diseases. We find that dermatologists, who often label AI datasets, also perform worse on images of dark skin tones and uncommon diseases. Fine-tuning AI models on the DDI images closes the performance gap between light and dark skin tones. These findings identify important weaknesses and biases in dermatology AI that should be addressed for reliable application to diverse patients and diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...