Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(17): 22066-22078, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629710

ABSTRACT

Development of crystalline porous materials for selective CO2 adsorption and storage is in high demand to boost the carbon capture and storage (CCS) technology. In this regard, we have developed a ß-keto enamine-based covalent organic framework (VM-COF) via the Schiff base polycondensation technique. The as-synthesized VM-COF exhibited excellent thermal and chemical stability along with a very high surface area (1258 m2 g-1) and a high CO2 adsorption capacity (3.58 mmol g-1) at room temperature (298 K). The CO2/CH4 and CO2/H2 selectivities by the IAST method were calculated to be 10.9 and 881.7, respectively, which were further experimentally supported by breakthrough analysis. Moreover, theoretical investigations revealed that the carbonyl-rich sites in a polymeric backbone have higher CO2 binding affinity along with very high binding energy (-39.44 KJ mol-1) compared to other aromatic carbon-rich sites. Intrigued by the best CO2 adsorption capacity and high CO2 selectivity, we have utilized the VM-COF for biogas purification produced by the biofermentation of municipal waste. Compared with the commercially available activated carbon, VM-COF exhibited much better purification ability. This opens up a new opportunity for the creation of functionalized nanoporous materials for the large-scale purification of waste-generated biogases to address the challenges associated with energy and the environment.

2.
Bioresour Technol ; 357: 127267, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35526715

ABSTRACT

The study examines the role of magnetite (1-150 mg/L) at the interface of Bacillus subtilis-electrode under poised-condition (-0.2 V) for product-formation and catalytic-conduct with the relative-gene-expression encoding lactate dehydrogenase (lctE), pyruvate dehydrogenase (pdhA), acetate kinase (ackA), pyruvate carboxylase (pycA), and NADH dehydrogenase (ndh). The magnetite load of 25 mg/L showed positive influence on acidogenesis resulting in H2 production of 264.7 mol/mL and fatty acids synthesis of 3.6 g/L. Additionally, this condition showed higher succinic acid productivity (2.8 g/L) which correlates with the upregulated pycA gene and fumarate to succinate redox peak. With 10 mg/L loading, production of higher acetic acid (3.1 g/L) along with H2 (181.6 mol/mL) was depicted wherein upregulation of pdhA, ackA and ndh genes was observed. In absence of magnetite, lctE gene was upregulated which resulted higher lactate production. The findings suggest that the mutual-interactions between magnetite-active sites of specific enzymes enhances the biocatalytic activity triggering product-formation.


Subject(s)
Bacillus subtilis , Ferrosoferric Oxide , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Escherichia coli/metabolism , Ferrosoferric Oxide/metabolism , Pyruvate Carboxylase/metabolism , Succinic Acid/metabolism
3.
Bioresour Technol ; 342: 125854, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34537531

ABSTRACT

The role of poised (negative/positive) potential (0.2/0.4/0.6/0.8 V vs Ag/AgCl at anode) was studied in electrofermentation system (EF) to understand the metabolic flux of Bacillus subtilis with pyruvate as a carbon source. The relative expression of genes encoding pyruvate dehydrogenase (pdhA), lactate dehydrogenase (lctE), acetate kinase (ackA), pyruvate carboxylase (pycA), adenylosuccinate lyase (purB), acylCoA dehydrogenase (acdA) and NADH dehydrogenase (ndh) allowed evaluation of metabolic changes in correlation to product formation and bioelectrochemical analysis. In comparison to control, poised circumstances showed marked influence on product profile with up-regulation of key enzymes involved in pyruvate metabolism. EF poised with - 0.8 V and -0.6 V enhanced bio-hydrogen production by 6 folds and 4 folds respectively. Concomitantly, -0.8 V resulted in maximum ethanol and acetic acid production whilst, -0.6 V and + 0.6 V resulted in maximum lactic acid and succinic acid production respectively. The transcripts for genes associated synthesis were upregulated in the respected poised reactors.


Subject(s)
Bacillus subtilis , Escherichia coli , Bacillus subtilis/genetics , Escherichia coli/genetics , Gene Expression , Pyruvic Acid , Succinic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...