Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Mol Microbiol ; 121(5): 1063-1078, 2024 05.
Article in English | MEDLINE | ID: mdl-38558112

ABSTRACT

Metalloprotease-gp63 is a virulence factor secreted by Leishmania. However, secretory pathway in Leishmania is not well defined. Here, we cloned and expressed the GRASP homolog from Leishmania. We found that Leishmania expresses one GRASP homolog of 58 kDa protein (LdGRASP) which localizes in LdRab1- and LPG2-positive Golgi compartment in Leishmania. LdGRASP was found to bind with COPII complex, LdARF1, LdRab1 and LdRab11 indicating its role in ER and Golgi transport in Leishmania. To determine the function of LdGRASP, we generated LdGRASP knockout parasites using CRISPR-Cas9. We found fragmentation of Golgi in Ld:GRASPKO parasites. Our results showed enhanced transport of non-GPI-anchored gp63 to the cell surface leading to higher secretion of this form of gp63 in Ld:GRASPKO parasites in comparison to Ld:WT cells. In contrast, we found that transport of GPI-anchored gp63 to the cell surface is blocked in Ld:GRASPKO parasites and thereby inhibits its secretion. The overexpression of dominant-negative mutant of LdRab1 or LdSar1 in Ld:GRASPKO parasites significantly blocked the secretion of non-GPI-anchored gp63. Interestingly, we found that survival of transgenic parasites overexpressing Ld:GRASP-GFP is significantly compromised in macrophages in comparison to Ld:WT and Ld:GRASPKO parasites. These results demonstrated that LdGRASP differentially regulates Ldgp63 secretory pathway in Leishmania.


Subject(s)
Metalloendopeptidases , Protozoan Proteins , Virulence Factors , Virulence Factors/metabolism , Virulence Factors/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Metalloendopeptidases/metabolism , Metalloendopeptidases/genetics , Golgi Apparatus/metabolism , Endoplasmic Reticulum/metabolism , Macrophages/parasitology , Macrophages/metabolism , Animals , Leishmania/metabolism , Leishmania/genetics , Protein Transport , CRISPR-Cas Systems , Golgi Matrix Proteins/metabolism , Golgi Matrix Proteins/genetics
2.
PLoS Pathog ; 20(2): e1012024, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38412149

ABSTRACT

Lipids stored in lipid-bodies (LBs) in host cells are potential sources of fatty acids for pathogens. However, the mechanism of recruitment of LBs from the host cells by pathogens to acquire fatty acids is not known. Here, we have found that Leishmania specifically upregulates the expression of host Rab18 and its GEF, TRAPPC9 by downregulating the expression of miR-1914-3p by reducing the level of Dicer in macrophages via their metalloprotease gp63. Our results also show that miR-1914-3p negatively regulates the expression of Rab18 and its GEF in cells. Subsequently, Leishmania containing parasitophorous vacuoles (Ld-PVs) recruit and retain host Rab18 and TRAPPC9. Leishmania infection also induces LB biogenesis in host cells and recruits LBs on Ld-PVs and acquires FLC12-labeled fatty acids from LBs. Moreover, overexpression of miR-1914-3p in macrophages significantly inhibits the recruitment of LBs and thereby suppresses the multiplication of parasites in macrophages as parasites are unable to acquire fatty acids. These results demonstrate a novel mechanism how Leishmania acquire fatty acids from LBs for their growth in macrophages.


Subject(s)
Leishmania , MicroRNAs , Lipid Droplets/metabolism , Macrophages/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Fatty Acids/metabolism , Cell Proliferation
3.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119687, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342312

ABSTRACT

Leishmania donovani is an auxotroph for heme. Parasite acquires heme by clathrin-mediated endocytosis of hemoglobin by specific receptor. However, the regulation of receptor recycling pathway is not known in Leishmania. Here, we have cloned, expressed and characterized the Rab4 homologue from L. donovani. We have found that LdRab4 localizes in both early endosomes and Golgi in L. donovani. To understand the role of LdRab4 in L. donovani, we have generated transgenic parasites overexpressing GFP-LdRab4:WT, GFP-LdRab4:Q67L, and GFP-LdRab4:S22N. Our results have shown that overexpression of GFP-LdRab4:Q67L or GFP-LdRab4:S22N does not alter the cell surface localization of hemoglobin receptor in L. donovani. Surprisingly, we have found that overexpression of GFP-LdRab4:S22N significantly blocks the transport of Ldgp63 to the cell surface whereas the trafficking of Ldgp63 is induced to the cell surface in GFP-LdRab4:WT and GFP-LdRab4:Q67L overexpressing parasites. Consequently, we have found significant inhibition of gp63 secretion by GFP-LdRab4:S22N overexpressing parasites whereas secretion of Ldgp63 is enhanced in GFP-LdRab4:WT and GFP-LdRab4:Q67L overexpressing parasites in comparison to untransfected control parasites. Moreover, we have found that survival of transgenic parasites overexpressing GFP-LdRab4:S22N is severely compromised in macrophages in comparison to GFP-LdRab4:WT and GFP-LdRab4:Q67L expressing parasites. These results demonstrated that LdRab4 unconventionally regulates the secretory pathway in L. donovani.


Subject(s)
Leishmania donovani , Secretory Pathway , Animals , Leishmania donovani/genetics , Animals, Genetically Modified/metabolism , Carrier Proteins/metabolism , Hemoglobins/metabolism , Heme/metabolism
4.
Immunity ; 57(1): 52-67.e10, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38091995

ABSTRACT

The regulation of polymorphonuclear leukocyte (PMN) function by mechanical forces encountered during their migration across restrictive endothelial cell junctions is not well understood. Using genetic, imaging, microfluidic, and in vivo approaches, we demonstrated that the mechanosensor Piezo1 in PMN plasmalemma induced spike-like Ca2+ signals during trans-endothelial migration. Mechanosensing increased the bactericidal function of PMN entering tissue. Mice in which Piezo1 in PMNs was genetically deleted were defective in clearing bacteria, and their lungs were predisposed to severe infection. Adoptive transfer of Piezo1-activated PMNs into the lungs of Pseudomonas aeruginosa-infected mice or exposing PMNs to defined mechanical forces in microfluidic systems improved bacterial clearance phenotype of PMNs. Piezo1 transduced the mechanical signals activated during transmigration to upregulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4, crucial for the increased PMN bactericidal activity. Thus, Piezo1 mechanosensing of increased PMN tension, while traversing the narrow endothelial adherens junctions, is a central mechanism activating the host-defense function of transmigrating PMNs.


Subject(s)
Cell Movement , Lung , Mechanotransduction, Cellular , Neutrophils , Animals , Mice , Cell Membrane , Ion Channels/genetics , Neutrophils/metabolism , Neutrophils/microbiology , Blood Bactericidal Activity/genetics , Mechanotransduction, Cellular/genetics
5.
Nat Commun ; 14(1): 6582, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37852964

ABSTRACT

Vascular endothelial cadherin (VE-cadherin) expressed at endothelial adherens junctions (AJs) is vital for vascular integrity and endothelial homeostasis. Here we identify the requirement of the ubiquitin E3-ligase CHFR as a key mechanism of ubiquitylation-dependent degradation of VE-cadherin. CHFR was essential for disrupting the endothelium through control of the VE-cadherin protein expression at AJs. We observe augmented expression of VE-cadherin in endothelial cell (EC)-restricted Chfr knockout (ChfrΔEC) mice. We also observe abrogation of LPS-induced degradation of VE-cadherin in ChfrΔEC mice, suggesting the pathophysiological relevance of CHFR in regulating the endothelial junctional barrier in inflammation. Lung endothelial barrier breakdown, inflammatory neutrophil extravasation, and mortality induced by LPS were all suppressed in ChfrΔEC mice. We find that the transcription factor FoxO1 is a key upstream regulator of CHFR expression. These findings demonstrate the requisite role of the endothelial cell-expressed E3-ligase CHFR in regulating the expression of VE-cadherin, and thereby endothelial junctional barrier integrity.


Subject(s)
Adherens Junctions , Ubiquitin , Animals , Mice , Adherens Junctions/metabolism , Ubiquitin/metabolism , Ligases/metabolism , Lipopolysaccharides/pharmacology , Cadherins/genetics , Cadherins/metabolism , Endothelium/metabolism , Ubiquitination , Endothelium, Vascular/metabolism , Cells, Cultured
6.
J Exp Med ; 220(11)2023 11 06.
Article in English | MEDLINE | ID: mdl-37615937

ABSTRACT

Recent studies suggest that training of innate immune cells such as tissue-resident macrophages by repeated noxious stimuli can heighten host defense responses. However, it remains unclear whether trained immunity of tissue-resident macrophages also enhances injury resolution to counterbalance the heightened inflammatory responses. Here, we studied lung-resident alveolar macrophages (AMs) prechallenged with either the bacterial endotoxin or with Pseudomonas aeruginosa and observed that these trained AMs showed greater resilience to pathogen-induced cell death. Transcriptomic analysis and functional assays showed greater capacity of trained AMs for efferocytosis of cellular debris and injury resolution. Single-cell high-dimensional mass cytometry analysis and lineage tracing demonstrated that training induces an expansion of a MERTKhiMarcohiCD163+F4/80low lung-resident AM subset with a proresolving phenotype. Reprogrammed AMs upregulated expression of the efferocytosis receptor MERTK mediated by the transcription factor KLF4. Adoptive transfer of these trained AMs restricted inflammatory lung injury in recipient mice exposed to lethal P. aeruginosa. Thus, our study has identified a subset of tissue-resident trained macrophages that prevent hyperinflammation and restore tissue homeostasis following repeated pathogen challenges.


Subject(s)
Macrophages, Alveolar , Trained Immunity , Animals , Mice , Adoptive Transfer , c-Mer Tyrosine Kinase/genetics , Phagocytosis
7.
ACS Infect Dis ; 8(10): 2119-2132, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36129193

ABSTRACT

The engineering of virus-like particles (VLPs) is a viable strategy for the development of vaccines and for the identification of therapeutic targets without using live viruses. Here, we report the generation and characterization of quadruple-antigen SARS-CoV-2 VLPs. VLPs were generated by transient transfection of two expression cassettes in adherent HEK293T cells─one cassette containing Mpro for processing of three structural proteins (M, E, and N), and the second cassette expressing the Spike protein. Further characterization revealed that the VLPs retain close morphological and antigenic similarity with the native virus and also bind strongly to the SARS-CoV-2 receptor hACE-2 in an in vitro binding assay. Interestingly, the VLPs were found to internalize into U87-MG cells through cholesterol-rich domains in a dynamin-dependent process. Finally, our results showed that mice immunized with VLPs induce robust humoral and cellular immune responses mediated by enhanced levels of IL-4, IL-17, and IFNγ. Taken together, our results demonstrate that VLPs mimic the native virus and induce a strong immune response, indicating the possible use of these particles as an alternative vaccine candidate against SARS-CoV-2. VLPs can also be effective in mapping the initial stages of virus entry and screening inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/prevention & control , HEK293 Cells , Humans , Interleukin-17 , Interleukin-4 , Mice , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization
8.
Pathogens ; 11(5)2022 May 16.
Article in English | MEDLINE | ID: mdl-35631106

ABSTRACT

Leishmania species are causative agents of human leishmaniasis, affecting 12 million people annually. Drugs available for leishmaniasis are toxic, and no vaccine is available. Thus, the major thrust is to identify new therapeutic targets. Leishmania is an auxotroph for heme and must acquire heme from the host for its survival. Thus, the major focus has been to understand the heme acquisition process by the parasites in the last few decades. It is conceivable that the parasite is possibly obtaining heme from host hemoprotein, as free heme is not available in the host. Current understanding indicates that Leishmania internalizes hemoglobin (Hb) through a specific receptor by a clathrin-mediated endocytic process and targets it to the parasite lysosomes via the Rab5 and Rab7 regulated endocytic pathway, where it is degraded to generate intracellular heme that is used by the parasite. Subsequently, intra-lysosomal heme is initially transported to the cytosol and is finally delivered to the mitochondria via different heme transporters. Studies using different null mutant parasites showed that these receptors and transporters are essential for the survival of the parasite. Thus, the heme acquisition process in Leishmania may be exploited for the development of novel therapeutics.

9.
Proc Natl Acad Sci U S A ; 119(15): e2121098119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35377803

ABSTRACT

The pathogenesis of lung fibrosis involves hyperactivation of innate and adaptive immune pathways that release inflammatory cytokines and growth factors such as tumor growth factor (TGF)ß1 and induce aberrant extracellular matrix protein production. During the genesis of pulmonary fibrosis, resident alveolar macrophages are replaced by a population of newly arrived monocyte-derived interstitial macrophages that subsequently transition into alveolar macrophages (Mo-AMs). These transitioning cells initiate fibrosis by releasing profibrotic cytokines and remodeling the matrix. Here, we describe a strategy for leveraging the up-regulation of the mannose receptor CD206 in interstitial macrophages and Mo-AM to treat lung fibrosis. We engineered mannosylated albumin nanoparticles, which were found to be internalized by fibrogenic CD206+ monocyte derived macrophages (Mo-Macs). Mannosylated albumin nanoparticles incorporating TGFß1 small-interfering RNA (siRNA) targeted the profibrotic subpopulation of CD206+ macrophages and prevented lung fibrosis. The findings point to the potential utility of mannosylated albumin nanoparticles in delivering TGFß-siRNA into CD206+ profibrotic macrophages as an antilung fibrosis strategy.


Subject(s)
Lymphotoxin-alpha , Macrophages, Alveolar , Nanoparticles , Pulmonary Fibrosis , RNA, Small Interfering , Animals , Bleomycin/pharmacology , Disease Models, Animal , Lymphotoxin-alpha/genetics , Macrophages, Alveolar/immunology , Mannose Receptor , Mice , Mice, Inbred C57BL , Nanoparticles/administration & dosage , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/therapy , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics
10.
ACS Nano ; 16(3): 4084-4101, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35230826

ABSTRACT

The complex involvement of neutrophils in inflammatory diseases makes them intriguing but challenging targets for therapeutic intervention. Here, we tested the hypothesis that varying endocytosis capacities would delineate functionally distinct neutrophil subpopulations that could be specifically targeted for therapeutic purposes. By using uniformly sized (∼120 nm in diameter) albumin nanoparticles (ANP) to characterize mouse neutrophils in vivo, we found two subsets of neutrophils, one that readily endocytosed ANP (ANPhigh neutrophils) and another that failed to endocytose ANP (ANPlow population). These ANPhigh and ANPlow subsets existed side by side simultaneously in bone marrow, peripheral blood, spleen, and lungs, both under basal conditions and after inflammatory challenge. Human peripheral blood neutrophils showed a similar duality. ANPhigh and ANPlow neutrophils had distinct cell surface marker expression and transcriptomic profiles, both in naive mice and in mice after endotoxemic challenge. ANPhigh and ANPlow neutrophils were functionally distinct in their capacities to kill bacteria and to produce inflammatory mediators. ANPhigh neutrophils produced inordinate amounts of reactive oxygen species and inflammatory chemokines and cytokines. Targeting this subset with ANP loaded with the drug piceatannol, a spleen tyrosine kinase (Syk) inhibitor, mitigated the effects of polymicrobial sepsis by reducing tissue inflammation while fully preserving neutrophilic host-defense function.


Subject(s)
Nanoparticles , Neutrophils , Albumins/metabolism , Animals , Endocytosis , Inflammation/drug therapy , Inflammation/metabolism , Mice , Neutrophils/metabolism
11.
Am J Respir Cell Mol Biol ; 66(2): 183-195, 2022 02.
Article in English | MEDLINE | ID: mdl-34706199

ABSTRACT

TLR4 signaling via endotoxemia in macrophages promotes macrophage transition to the inflammatory phenotype through NLRP3 inflammasome activation. This transition event has the potential to trigger acute lung injury (ALI). However, relatively little is known about the regulation of NLRP3 and its role in the pathogenesis of ALI. Here we interrogated the signaling pathway activated by CD38, an ectoenzyme expressed in macrophages, in preventing ALI through suppressing NLRP3 activation. Wild-type and Cd38-knockout (Cd38-/-) mice were used to assess inflammatory lung injury, and isolated macrophages were used to delineate underlying TLR4 signaling pathway. We showed that CD38 suppressed TLR4 signaling in macrophages by inhibiting Bruton's tyrosine kinase (Btk) through the recruitment of Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) and resulting in the dephosphorylation of activated Btk. Cd38-/- mice show enhanced lung polymorphonuclear leukocyte extravasation and severe lung injury. LPS- or polymicrobial sepsis-induced mortality in Cd38-/- mice were markedly augmented compared with wild types. CD38 in macrophages functioned by inhibiting Btk activation through activation of SHP2 and resulting dephosphorylation of Btk, and thereby preventing activation of downstream targets NF-κB and NLRP3. Cd38-/- macrophages displayed markedly increased activation of Btk, NF-κB, and NLRP3, whereas in vivo administration of the Btk inhibitor ibrutinib (a Food and Drug Administration-approved drug) prevented augmented TLR4-induced inflammatory lung injury seen in Cd38-/- mice. Our findings together show upregulation of CD38 activity and inhibition of Btk activation downstream of TLR4 activation as potential strategies to prevent endotoxemic ALI.


Subject(s)
ADP-ribosyl Cyclase 1/physiology , Acute Lung Injury/prevention & control , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Endotoxemia/prevention & control , Inflammasomes/drug effects , Macrophages/drug effects , Membrane Glycoproteins/physiology , Piperidines/pharmacology , Acute Lung Injury/etiology , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Adenine/pharmacology , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Animals , Endotoxemia/etiology , Endotoxemia/metabolism , Endotoxemia/pathology , Female , Inflammasomes/metabolism , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/genetics , NF-kappa B/metabolism , Signal Transduction
12.
Ground Water ; 60(5): 685-698, 2022 09.
Article in English | MEDLINE | ID: mdl-34951006

ABSTRACT

Kuwait, an arid country, wants to have a reserve of water for emergency use and has planned to create an underground reserve of water through multi-well artificial recharge at Kabd area. Numerical modeling of different recharge-recovery scenarios was carried out to chalk out an optimum strategy for implementation of the project. These scenario runs suggested that apart from the aquifer parameters and the quality of the groundwater and the recharge water, the well spacing and well construction, orientation of the field with respect to the prevailing hydraulic gradient, and the injection and the pumping schedule would determine the overall recovery efficiency of the setup. For the selected site, following strategies were found to have positive impact on meeting the goals of the creation of a reserve of water for use in an emergency: (1) during the reserve creation stage, simultaneous recharge and pumping through alternate wells; (2) the compensation of the water lost from the reserve created due to the flow down the hydraulic gradient during the waiting period; and (3) the orientation of the long axis of the field perpendicular to the regional hydraulic gradient. The adoption of cyclic injection and recovery option for the creation of the reserve eliminates the need of the first two steps but calls for several cycles of injection followed by recovery and adequate and consistent supply of water for injection over that period. An optimum field design and two alternative recharge options have been suggested based on the above observations.


Subject(s)
Groundwater , Environmental Monitoring/methods , Kuwait , Water , Water Wells
13.
FEBS Lett ; 595(4): 548-558, 2021 02.
Article in English | MEDLINE | ID: mdl-33314040

ABSTRACT

Leishmania internalize hemoglobin (Hb) via a specific receptor (HbR) for their survival. To identify the Hb-binding domain of HbR, we cloned and expressed several truncated proteins of HbR and determined their ability to bind Hb. Our findings reveal that 90% of Hb-binding activity is retained in HbR41-80 in comparison with HbR1-471 . We synthesized a 40 amino acid peptide (SSEKMKQLTMYMIHEMVEGLEGRPSTVRMLPSFVYTSDPA) corresponding to HbR41-80 and found that it specifically binds Hb. Subsequently, we found that the HbR41-80 peptide completely blocks Hb uptake in both promastigote and amastigote forms of Leishmania and, thereby, inhibits the growth of the parasite. These results demonstrate that HbR41-80 is the Hb-binding domain of HbR, which might be used as a potential therapeutic agent to inhibit the growth of Leishmania.


Subject(s)
Antiprotozoal Agents/metabolism , Hemoglobins/chemistry , Leishmania donovani/metabolism , Life Cycle Stages/genetics , Peptides/metabolism , Protozoan Proteins/chemistry , Receptors, Cell Surface/chemistry , Amino Acid Sequence , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/pharmacology , Binding, Competitive , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Hemoglobins/metabolism , Leishmania donovani/drug effects , Leishmania donovani/genetics , Leishmania donovani/growth & development , Life Cycle Stages/drug effects , Models, Molecular , Peptides/chemical synthesis , Peptides/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structural Homology, Protein
14.
Biochim Biophys Acta Mol Cell Res ; 1868(1): 118868, 2021 01.
Article in English | MEDLINE | ID: mdl-33011192

ABSTRACT

Previously, we showed that Rab5a and Rab5b differentially regulate fluid-phase and receptor-mediated endocytosis in Leishmania, respectively. To unequivocally demonstrate the role of Rab5b in hemoglobin endocytosis in Leishmania, we generated null-mutants of Rab5b parasites by sequentially replacing both copies of LdRab5b with the hygromycin and neomycin resistance gene cassettes. LdRab5b-/- null-mutant parasite was confirmed by qPCR analysis of genomic DNA using LdRab5b specific primers. LdRab5b-/- cells showed severe growth defect indicating essential function of LdRab5b in parasite. To characterize the role of Rab5b in Hb endocytosis in parasites, LdRab5b-/- cells were rescued by exogenous addition of hemin in growth medium. Our results showed that LdRab5b-/- cells are relatively smaller in size. Ultrastructural analysis revealed the presence of relatively enlarged flagellar pocket and bigger intracellular vesicles in these cells in comparison to control cells. Both promastigotes and amastigotes of Rab5b null-mutant parasites were unable to internalize Hb but fluid phase endocytosis of different markers was not affected. However, complementation of LdRab5b:WT in LdRab5b-/- cells (LdRab5b-/-:pRab5b:WT) rescued Hb internalization in these cells. Interestingly, LdRab5b-/- cells showed significantly less Hb-receptor on cell surface in comparison to control cells indicating a block in HbR trafficking. Finally, we showed that LdRab5b-/- parasites can infect the macrophages but are unable to survive after 96 h of infection in comparison to control cells. However, supplementation of hemin in the growth medium significantly rescued LdRab5b-/-Leishmania survival in macrophage indicating that LdRab5b function is essential for the acquisition of heme from internalized Hb for the survival of Leishmania.


Subject(s)
Heme/genetics , Leishmania donovani/genetics , Leishmaniasis, Visceral/genetics , rab5 GTP-Binding Proteins/genetics , Amino Acid Sequence/genetics , Animals , Endocytosis/genetics , Gene Knockout Techniques , Hemoglobins/genetics , Humans , Leishmania donovani/pathogenicity , Leishmaniasis, Visceral/parasitology , Protein Transport/genetics
15.
Water Res ; 170: 115314, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31835139

ABSTRACT

During the First Gulf War (1991) a large number of oil wells were destroyed and oil fires subsequently extinguished with seawater. As a result Kuwait's sparse fresh groundwater resources were severely contaminated with crude oil. Since then limited research has focused on the microbial community ecology of the groundwater and their impact on the associated contamination. Here, the microbial community ecology (bacterial, archaeal and eukaryotic) and how it relates to the characteristics of the hydrocarbon contaminants were examined for the first time since the 1991 event. This study was conducted using 15 wells along the main groundwater flow direction and detected several potential hydrocarbon degrading microorganisms such as Hyphomicrobiaceae, Porphyromonadaceae and Eurotiomycetes. The beta diversity of the microbial communities correlated significantly with total petroleum hydrocarbon (TPH) concentrations and salinity. The TPH consisted mainly of polar compounds present as an unresolved complex mixture (UCM) of a highly recalcitrant nature. Based on the proportions of TPH to dissolved organic carbon (DOC), the results indicate that some minor biodegradation has occurred within highly contaminated aquifer zones. However, overall the results from this study suggest that the observed variations in TPH concentrations among the sampled wells are mainly induced by mixing/dilution with pristine groundwater rather than by biodegradation of the contaminants. The findings make an important contribution to better understand the fate of the groundwater pollution in Kuwait, with important implications for the design of future remediation efforts.


Subject(s)
Groundwater , Microbiota , Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Biodegradation, Environmental , Gulf War , Hydrocarbons , Kuwait
16.
Biodegradation ; 30(1): 71-85, 2019 02.
Article in English | MEDLINE | ID: mdl-30729339

ABSTRACT

During the 1991 Gulf War, oil wells in the oil fields of Kuwait were set aflame and destroyed. This resulted in severe crude oil pollution of the countries only fresh water aquifers. Here, for the first time the natural attenuation and biodegradation of the persisting groundwater contamination was investigated to assess potential processes in the aquifer. Biodegradation experiments were conducted under aerobic and multiple anaerobic conditions using microcosms of the contaminated groundwater from Kuwait. Under the conditions tested, a portion of the total petroleum hydrocarbon (TPH) component was degraded, however there was only a slight change in the bulk concentration of the contaminant measured as dissolved organic carbon (DOC), suggesting the presence of a recalcitrant pollutant. Changes in the associated microbial community composition under different reduction-oxidation conditions were observed and known hydrocarbon degraders identified. The results of this study indicate that lingering contaminant still persists in the groundwater and is recalcitrant to further biodegradation, which presents challenges for future remediation plans.


Subject(s)
Groundwater/microbiology , Gulf War , Petroleum Pollution/analysis , Petroleum/analysis , Bacteria/metabolism , Biodegradation, Environmental , Biodiversity , Groundwater/chemistry , Kuwait , Water Pollutants, Chemical/analysis
17.
J Cell Biol ; 217(12): 4199-4214, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30309979

ABSTRACT

SipA is a major effector of Salmonella, which causes gastroenteritis and enteric fever. Caspase-3 cleaves SipA into two domains: the C-terminal domain regulates actin polymerization, whereas the function of the N terminus is unknown. We show that the cleaved SipA N terminus binds and recruits host Syntaxin8 (Syn8) to Salmonella-containing vacuoles (SCVs). The SipA N terminus contains a SNARE motif with a conserved arginine residue like mammalian R-SNAREs. SipAR204Q and SipA1-435R204Q do not bind Syn8, demonstrating that SipA mimics a cognate R-SNARE for Syn8. Consequently, Salmonella lacking SipA or that express the SipA1-435R204Q SNARE mutant are unable to recruit Syn8 to SCVs. Finally, we show that SipA mimicking an R-SNARE recruits Syn8, Syn13, and Syn7 to the SCV and promotes its fusion with early endosomes to potentially arrest its maturation. Our results reveal that SipA functionally substitutes endogenous SNAREs in order to hijack the host trafficking pathway and promote Salmonella survival.


Subject(s)
Bacterial Proteins/metabolism , Endosomes/metabolism , Host-Pathogen Interactions , Membrane Fusion , Microfilament Proteins/metabolism , Qa-SNARE Proteins/metabolism , Salmonella/physiology , Bacterial Proteins/genetics , Endosomes/microbiology , HeLa Cells , Humans , Microfilament Proteins/genetics , Qa-SNARE Proteins/genetics
18.
Biophys J ; 115(7): 1217-1230, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30241678

ABSTRACT

Leishmania donovani possess two isoforms of Rab5 (Rab5a and Rab5b), which are involved in fluid phase and receptor-mediated endocytosis, respectively. We have characterized the solution structure and dynamics of a stabilized truncated LdRab5a mutant. For the purpose of NMR structure determination, protein stability was enhanced by systematically introducing various deletions and mutations. Deletion of hypervariable C-terminal and the 20 residues LdRab5a specific insert slightly enhanced the stability, which was further improved by C107S mutation. The final construct, truncated LdRab5a with C107S mutation, was found to be stable for longer durations at higher concentration, with an increase in melting temperature by 10°C. Solution structure of truncated LdRab5a shows the characteristic GTPase fold having nucleotide and effector binding sites. Orientation of switch I and switch II regions match well with that of guanosine 5'-(ß, γ-imido)triphosphate (GppNHp)-bound human Rab5a, indicating that the truncated LdRab5a attains the canonical GTP bound state. However, the backbone dynamics of the P-loop, switch I, and switch II regions were slower than that observed for guanosine 5'-(ß, γ-imido)triphosphate (GMPPNP)-bound H-Ras. This dynamic profile may further complement the residue-specific complementarity in determining the specificity of interaction with the effectors. In parallel, biophysical investigations revealed the urea induced unfolding of truncated LdRab5a to be a four-state process that involved two intermediates, I1 and I2. The maximal 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (Bis-ANS) binding was observed for I2 state, which was inferred to have molten globule like characteristics. Overall, the strategy presented would have significant impact for studying other Rab and small GTPase proteins by NMR spectroscopy.


Subject(s)
Leishmania donovani , rab5 GTP-Binding Proteins/chemistry , rab5 GTP-Binding Proteins/metabolism , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Stability , Protein Unfolding , Sequence Alignment , Sequence Deletion , Temperature , rab5 GTP-Binding Proteins/genetics
19.
J Biol Chem ; 292(29): 12111-12125, 2017 07 21.
Article in English | MEDLINE | ID: mdl-28576830

ABSTRACT

Metalloprotease gp63 (Leishmania donovani gp63 (Ldgp63)) is a critical virulence factor secreted by Leishmania However, how newly synthesized Ldgp63 exits the endoplasmic reticulum (ER) and is secreted by this parasite is unknown. Here, we cloned, expressed, and characterized the GTPase LdSar1 and other COPII components like LdSec23, LdSec24, LdSec13, and LdSec31 from Leishmania to understand their role in ER exit of Ldgp63. Using dominant-positive (LdSar1:H74L) and dominant-negative (LdSar1:T34N) mutants of LdSar1, we found that GTP-bound LdSar1 specifically binds to LdSec23, which binds, in turn, with LdSec24(1-702) to form a prebudding complex. Moreover, LdSec13 specifically interacted with His6-LdSec31(1-603), and LdSec31 bound the prebudding complex via LdSec23. Interestingly, dileucine 594/595 and valine 597 residues present in the Ldgp63 C-terminal domain were critical for binding with LdSec24(703-966), and GFP-Ldgp63L594A/L595A or GFP-Ldgp63V597S mutants failed to exit from the ER. Moreover, Ldgp63-containing COPII vesicle budding from the ER was inhibited by LdSar1:T34N in an in vitro budding assay, indicating that GTP-bound LdSar1 is required for budding of Ldgp63-containing COPII vesicles. To directly demonstrate the function of LdSar1 in Ldgp63 trafficking, we coexpressed RFP-Ldgp63 along with LdSar1:WT-GFP or LdSar1:T34N-GFP and found that LdSar1:T34N overexpression blocks Ldgp63 trafficking and secretion in Leishmania Finally, we noted significantly compromised survival of LdSar1:T34N-GFP-overexpressing transgenic parasites in macrophages. Taken together, these results indicated that Ldgp63 interacts with the COPII complex via LdSec24 for Ldgp63 ER exit and subsequent secretion.


Subject(s)
COP-Coated Vesicles/enzymology , GTP Phosphohydrolases/metabolism , Leishmania donovani/metabolism , Macrophages/parasitology , Metalloendopeptidases/metabolism , Protozoan Proteins/metabolism , Virulence Factors/metabolism , Amino Acid Substitution , COP-Coated Vesicles/metabolism , Cell Line, Tumor , Cytosol/enzymology , Cytosol/metabolism , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/genetics , Humans , Intracellular Membranes/enzymology , Intracellular Membranes/metabolism , Leishmania donovani/cytology , Leishmania donovani/genetics , Leishmania donovani/growth & development , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Macrophages/cytology , Macrophages/metabolism , Metalloendopeptidases/chemistry , Metalloendopeptidases/genetics , Mutagenesis, Site-Directed , Mutation , Organisms, Genetically Modified , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Interaction Domains and Motifs , Protein Transport , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Vesicular Transport Proteins/chemistry , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Virulence Factors/chemistry , Virulence Factors/genetics
20.
PLoS Pathog ; 13(6): e1006459, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28650977

ABSTRACT

Several intracellular pathogens arrest the phagosome maturation in the host cells to avoid transport to lysosomes. In contrast, the Leishmania containing parasitophorous vacuole (PV) is shown to recruit lysosomal markers and thus Leishmania is postulated to be residing in the phagolysosomes in macrophages. Here, we report that Leishmania donovani specifically upregulates the expression of Rab5a by degrading c-Jun via their metalloprotease gp63 to downregulate the expression of miR-494 in THP-1 differentiated human macrophages. Our results also show that miR-494 negatively regulates the expression of Rab5a in cells. Subsequently, L. donovani recruits and retains Rab5a and EEA1 on PV to reside in early endosomes and inhibits transport to lysosomes in human macrophages. Similarly, we have also observed that Leishmania PV also recruits Rab5a by upregulating its expression in human PBMC differentiated macrophages. However, the parasite modulates the endosome by recruiting Lamp1 and inactive pro-CathepsinD on PV via the overexpression of Rab5a in infected cells. Furthermore, siRNA knockdown of Rab5a or overexpression of miR-494 in human macrophages significantly inhibits the survival of the parasites. These results provide the first mechanistic insights of parasite-mediated remodeling of endo-lysosomal trafficking to reside in a specialized early endocytic compartment.


Subject(s)
Endosomes/parasitology , Leishmania donovani/physiology , Leukocytes, Mononuclear/parasitology , Macrophages/parasitology , MicroRNAs/genetics , rab5 GTP-Binding Proteins/metabolism , Animals , Down-Regulation , Endosomes/microbiology , Humans , Lysosomes/metabolism , Phagosomes/microbiology , Transcriptional Activation/genetics , Up-Regulation , Vacuoles/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...