Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Microbiol Resour Announc ; 12(11): e0049923, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37905902

ABSTRACT

Lactobacillus fermentum remains as potential probiotic bacterium that enhances immunological response, produces antimicrobials, acts as food preservative, and lowers blood cholesterol level. We report the draft genome of Lactobacillus fermentum S2 consisting of 1.97 Mb genome size, 52.27% G + C content, 3 rRNA genes, 51 tRNA genes, and 2,004 protein-coding sequences.

2.
Gene ; 856: 147154, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36574936

ABSTRACT

Enterococcal plasmids have attracted considerable interest because of their indispensable role in the pathogenesis and dissemination of multidrug-resistance. In this work, five novel plasmids pSRB2, pSRB3, pSRB4, pSRB5 and pSRB7 have been identified and characterised, coexisting in Eneterococcus italicus SD1 from fermented milk. The plasmids pSRB2, pSRB3 and pSRB5 were found to replicate via theta mode of replication while pSRB4 and pSRB7 were rolling-circle plasmids. Comparative analysis of SD1-plasmids dictated that the plasmids are mosaic with novel architecture. Plasmids pSRB2 and pSRB5 are comprised of a typical iteron-based class-A theta type origin of replication, whereas pSRB3 has a Class-D theta type replication origin like pAMß1. The plasmids pSRB4 and pSRB7 shared similar ori as in pWV01. The SD1 class-A theta type plasmids shared significant homology between their replication proteins with differences in their DNA-binding domain and comprises of distinct iterons. The differences in their iterons and replication proteins restricts the "handcuff" formation for inhibition of plasmid replication, rendering to their compatibility to coexist. Similarly, for SD1 rolling circle plasmids the differences in the replication protein binding site in the origin and the replication protein supports their coexistence by inhibiting the crosstalk between the origins and replication proteins. The phylogenetic tree of their replication proteins revealed their distant kinship. The results indicate that the identified plasmids are unique to E. italicus SD1, providing further opportunities to study their utility in designing multiple gene expression systems for the simultaneous production of proteins in enterococci with the renewed concept of plasmid incompatibility.


Subject(s)
Cultured Milk Products , DNA Replication , Animals , DNA Replication/genetics , Milk , Phylogeny , Plasmids/genetics , Proteins/genetics , Replication Origin/genetics , Cultured Milk Products/microbiology
3.
Microorganisms ; 10(6)2022 May 31.
Article in English | MEDLINE | ID: mdl-35744650

ABSTRACT

Lactic acid bacteria (LAB) play a very vital role in food production, preservation, and as probiotic agents. Some of these species can colonize and survive longer in the gastrointestinal tract (GIT), where their presence is crucially helpful to promote human health. LAB has also been used as a safe and efficient incubator to produce proteins of interest. With the advent of genetic engineering, recombinant LAB have been effectively employed as vectors for delivering therapeutic molecules to mucosal tissues of the oral, nasal, and vaginal tracks and for shuttling therapeutics for diabetes, cancer, viral infections, and several gastrointestinal infections. The most important tool needed to develop genetically engineered LABs to produce proteins of interest is a plasmid-based gene expression system. To date, a handful of constitutive and inducible vectors for LAB have been developed, but their limited availability, host specificity, instability, and low carrying capacity have narrowed their spectrum of applications. The current review discusses the plasmid-based vectors that have been developed so far for LAB; their functionality, potency, and constraints; and further highlights the need for a new, more stable, and effective gene expression platform for LAB.

4.
Gene ; 777: 145459, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33515726

ABSTRACT

Enterococcal plasmids have generated renewed interest for their indispensable role in pathogenesis and dissemination of multidrug-resistance. Recently, a novel plasmid pSM409 (4303-bp, GC% = 33.6%), devoid of antibiotic-resistance and virulence genes, has been identified in Enterococcus faecium RME, isolated from raw milk by us. pSM409 contains six open reading frames encoding a replication initiator protein (RepB) and five accessory proteins: antitoxin epsilon, bacteriocin immunity protein, HsdS, and two hypothetical proteins. Comparative sequence analysis of pSM409 reveals a mosaic pattern of similarity with different loci obtained from different theta plasmids, which dictates the plasmid to be heterogeneous or mosaic, possibly due to recombination. The pSM409 comprised of a typical theta-type origin of replication with four and a half direct repeats (iterons) of 22 nucleotides. The pSM409-RepB shared 76-82% homology with the RepB of reported theta plasmids from different genera, with dissimilarities mostly in its DNA-binding and C-terminal domain. The RepB sequence-based phylogenetic tree revealed its distinct position relative to the reported ones. The RepB grouped in the same clade has identical DNA-binding domains and their cognate iterons, possibly due to their sequence-specific interaction to initiate plasmid replication. Comparative analysis of the pSM409-iteron reveals that the repeats markedly differed from their closest homologues. This clade-specific relationship provides a new concept of classifying theta plasmids. The theta-type replicon identified in pSM409 has been found to be unique to E. faecium RME, prompting us to further investigate its utility as a vector for genetic manipulation of enterococci for health and industry.


Subject(s)
Enterococcus faecium/genetics , Milk/microbiology , Plasmids/genetics , Amino Acid Sequence/genetics , Animals , Base Sequence/genetics , Cattle , DNA Replication/genetics , DNA, Bacterial/genetics , Enterococcus faecium/isolation & purification , Open Reading Frames/genetics , Repetitive Sequences, Nucleic Acid , Replicon/genetics
5.
Microbiol Resour Announc ; 8(11)2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30938324

ABSTRACT

Limited information is available on the whole-genome sequences of Kurthia spp. Here, we report, for the first time, the draft genome sequence of Kurthia gibsonii designated as strain B83. The strain was isolated from spinach (Spinacia oleracea L.) leaf. The genome was sequenced on the Illumina NextSeq 500 platform.

6.
Article in English | MEDLINE | ID: mdl-30574584

ABSTRACT

Dahi is a traditional Indian fermented milk consumed regularly as part of the diet because of its palatability and health benefits. Here, we report the draft genome sequence of a unique strain of Lactococcus lactis subsp. lactis, W8, a lactic acid bacterium that produces nisin while fermenting milk to dahi.

7.
Curr Microbiol ; 70(2): 253-9, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25319027

ABSTRACT

A constitutively ß-galactosidase (LacL)-producing Lactobacillus fermentum M1 isolated from fermented milk was found to produce ß-galactosidase in the presence of glucose. ß-galactosidase activity produced in glucose (30 mM) medium was 2.17 U/mL as compared to 2.27 and 2.19 U/mL with galactose and lactose, respectively. When a combination of glucose (30 or 60 mM) with galactose (30 mM) was used as carbon source, ß-galactosidase activity was not repressed rather was found increased when compared to carbon sources used individually. In real-time PCR analysis of mRNA synthesized on individual and combined carbon sources, repression of the lacL gene expression was not observed. This observation suggests that the strain M1 lacked normal carbon catabolite repression. Examination of nucleotide sequence of lacL identified two catabolite responsive elements (cre): cre1 located downstream near the promoter region and cre2 within the coding sequence. Each of which differed from the 14-bp consensus by a single nucleotide. In cre1, it is C in place of highly conserved T at position 1 in the consensus. In cre 2, it is G in place of C, a residue completely conserved at position 13. Since catabolite genes in Gram-positive bacteria are regulated by carbon catabolite protein A (CcpA) through interaction with DNA at a specific cis-acting cre, it is assumed that base changes at conserved position in the cre elements disrupt CcpA binding and thereby leading to constitutive expression of lacL gene. The study noted to be the first report about the constitutive production of ß-galactosidase in L. fermentum.


Subject(s)
Gene Expression Regulation, Bacterial , Limosilactobacillus fermentum/genetics , beta-Galactosidase/genetics , Base Sequence , Carbon/metabolism , Consensus Sequence , Enzyme Activation , Limosilactobacillus fermentum/growth & development , Limosilactobacillus fermentum/metabolism , Molecular Sequence Data , Promoter Regions, Genetic , RNA, Messenger/chemistry , RNA, Messenger/genetics , Sequence Analysis, DNA , beta-Galactosidase/biosynthesis , beta-Galactosidase/chemistry
8.
J Basic Microbiol ; 55(4): 527-37, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25404211

ABSTRACT

An endo-ß-1,4-xylanase gene xynA of a thermophilic Geobacillus sp. WBI from "hot" compost was isolated by PCR amplification. The gene encoding 407 residues were overexpressed in E. coli and purified by Ni-NTA chromatography. The purified enzyme (47 kDa) had a broad pH optimum of 6.0 to 9.0, and was active between 50 and 90 °C. The enzyme retained 100% of its activity when incubated at 65 °C for 1 h under alkaline condition (pH 10.0) and retained 75% activity at pH 11.0. The K(m) and V(max) of the enzyme were 0.9 mg ml(-1) and 0.8 µmol ml(-1) min(-1), respectively. In molecular dynamics simulation at 338 K (65 °C), the enzyme was found to be stable. At an elevated temperature (450 K) specific α-helix and ß-turns of the proteins were most denatured. The denaturation was less in WBI compared with its highest homolog G. stearothermophilus T-6 xylanase with difference of six residues. The results predict that these regions are responsible for the improved thermostability observed over related enzymes. The present work encourages further experimental demonstration to understand how these regions contribute thermostability to WBI xylanase. The study noted that WBI produces a xylanase with unique characteristics, specifically alkali-thermostability.


Subject(s)
Endo-1,4-beta Xylanases/isolation & purification , Endo-1,4-beta Xylanases/metabolism , Geobacillus/enzymology , Xylans/metabolism , Alkalies , Cloning, Molecular , Computer Simulation , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/genetics , Enzyme Stability , Escherichia coli/genetics , Geobacillus/genetics , Hot Temperature , Hydrogen-Ion Concentration , Kinetics , Molecular Dynamics Simulation , Polymerase Chain Reaction , Sequence Analysis , Soil Microbiology
9.
Curr Microbiol ; 67(6): 668-73, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23828183

ABSTRACT

The capability of Lactococcus lactis to produce nisin in the presence of bile in the intestinal environment remains an intriguing question. The aim of this study was to determine the effects of bile on production of nisin and the mRNA expression of nisin genes of L. lactis W8. The strain L. lactis W8 was grown on glucose in the absence and presence of bile (0.005-0.08 %) and the antibacterial activities of culture supernatants were determined. In culture with 0.035 % bile, the nisin activity was significantly reduced (400 AU/mL) within 5 h compared to that in the control without bile (2000 AU/mL), while growth of the cells was only slightly affected. In the presence of 0.07 % bile no nisin activity of the strain was manifested. Consistent with these results, mRNA expression of nisin-biosynthetic genes nisZ, nisRK, nisI, and nisF was down-regulated by 7.5-, 2.5-, 1.7-, and 6.0-fold, respectively in cells grown in the presence of bile (0.07 %) as compared to control culture without bile. The present study suggested that bile inhibited transcription of nisin genes. Nisin-production in intestine by orally administered L. lactis, thus, does not occur since complete inhibition of nisin-production by bile is observed at a concentration much lower than the physiological concentration (0.3 %) of bile present in the human intestine. The molecular mechanism underlying the bile-mediated inhibition of nisin genes remains to be elucidated. This is the first report on bile-mediated inhibition of nisin genes.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Antibiosis/drug effects , Bile/metabolism , Gene Expression/drug effects , Lactococcus lactis/drug effects , Lactococcus lactis/metabolism , Nisin/biosynthesis , Animals , Biosynthetic Pathways/drug effects , Biosynthetic Pathways/genetics , Cattle , Culture Media/chemistry , Gene Expression Profiling , RNA, Messenger/biosynthesis
10.
J Food Prot ; 72(12): 2615-7, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20003749

ABSTRACT

Lactococcus lactis strain W8, which contains the nisin Z gene in its genome, grew well and produced nisin in cow's milk at temperatures of 30 to 37 degrees C. Maximum production of nisin was achieved at 6 h and was 4,000 activity units (AU) per ml in skim milk and 2,400 AU/ml in 3% fat milk. The organism produced nisin even in 20 times diluted skim milk and 3% fat milk at 1,000 and 600 AU/ml, respectively. Boiling of the fermented milk (pH 4.2) made with this culture allowed the separation of the liquid part (whey) from the curd. When 20 times diluted skim milk was fermented and the whey derived from it was lyophilized, the yield of nisin was 60,000 AU/g. The antimicrobial activity of the nisin preparation was stable for at least 1 year at refrigeration temperature. L. lactis W8 may have significant applications in the food industry for a cost-effective natural nisin preparation.


Subject(s)
Fermentation , Lactococcus lactis/classification , Lactococcus lactis/metabolism , Nisin/metabolism , Animals , Cattle , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...