Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 227: 307-315, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36509205

ABSTRACT

The most ubiquitous aromatic biopolymer in nature, lignin offers a promising foundation for the development of bio-based chemicals with wide-ranging industrial uses attributable to its aromatic structure. Lignin must first be depolymerized into smaller oligomeric and monomeric units at the initial stage of lignin bioconversion, followed by separation to recover valuable products. This study demonstrates an integrative biorefinery idea based on in-situ depolymerization of the lignin via microbial electro-Fenton reaction in a microbial peroxide-producing cell and recovery of the identified products i.e., phenolic or aromatic monomers by one step high throughput chromatography. The yield percentage of acetovanillone, ethylvanillin, and ferulic acid recovered from the depolymerized lignin using the integrative biorefinery strategy were 2.1 %, 9.1 %, and 9.04 %, respectively. These products have diverse industrial usage and can be employed as platform chemicals. The development of a novel system for efficient simultaneous lignin depolymerization and subsequent quality separation are demonstrated in this study.


Subject(s)
Lignin , Phenols , Lignin/chemistry
2.
Bioresour Technol ; 361: 127605, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35835423

ABSTRACT

The enormous use of synthetic antibiotic and personal care products has impacted the natural microbiome and ecosystem. Overtime, treatment technologies developed suffered due to incomplete removal hence, a pilot dual-chambered microbial peroxide-producing cell that degrades ampicillin catalyzed by homogenous Fenton-reaction was designed. The system reported maximum current at 16.714 ± 0.048 µAcm-2, power output of 1.956 ± 0.015 mW m-2; 88 ± 2.90 mM of H2O2 generation with Na2SO4 that degraded 95.9 ± 3.00 to 97.8 ± 3.20% of 10 mg L-1ampicillin within 72 hrs with electro-active Shewanella putrefaciens. An E. coli bioactivity assay with ampicillin exhibited no sensitivity zone due to the loss of activity. Analytical spectroscopic studies reveal ß-Lactam ring deformation; Liquid Chromatography-Mass Spectroscopy clearly shows the presence of degradation metabolites. A sustainable wastewater treatment with 72 ± 4.5% reduction in anodic chemical oxygen demand was achieved. Present results designate the technology, as promising for effective antibiotics removal for wastewater treatment concomitant with electricity generation.


Subject(s)
Hydrogen Peroxide , Water Pollutants, Chemical , Ampicillin , Anti-Bacterial Agents/pharmacology , Ecosystem , Electrodes , Escherichia coli/metabolism , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Peroxides , Wastewater , beta-Lactams
3.
Int J Biol Macromol ; 202: 431-437, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-34999046

ABSTRACT

Lignin is one of the most abundant naturally occurring polymers and can produce value-added products such as vanillin and p-coumaric acid. In the current work, in-situ depolymerization of lignin for its valorization in a microbial peroxide-producing cell (MPPC) system was performed. It is an electrochemical cell that requires no external energy to produce H2O2 for the advanced oxidation process. Lignin in the MPPC system undergoes oxidative depolymerization to generate value-added products. The maximum open-circuit voltage (OCV) was 1.143 V, the current density and power densities were 14 mA/cm2 and 13 mW/cm2, respectively, along with the production of 26 mM of H2O2. The degradation of signature linkages such as ß-ß bond and ß-0-4 bond were analyzed and confirmed using FTIR spectroscopy. Vanillin, p-coumaric acid, ferulic acid, etc. were generated during depolymerization and were detected using LC-QTOF-MS.


Subject(s)
Lignin , Peroxides , Hydrogen Peroxide , Lignin/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...