Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 15(5): 1726-1735, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38303938

ABSTRACT

Contrary to conventional beliefs, we show how a functional ligand that does not exhibit any redox activity elevates the charge storage capability of an electric double layer via a proton charge assembly. Compared to an unsubstituted ligand, a non-redox active carboxy ligand demonstrated nearly a 4-fold increase in charge storage, impressive capacitive retention even at a rate of 900C, and approximately a 2-fold decrease in leakage currents with an enhancement in energy density up to approximately 70% via a non-electrochemical route of proton charge assembly. Generalizability of these findings is presented with various non-redox active functional units that can undergo proton charge assembly in the ligand. This demonstration of non-redox active functional units enriching supercapacitive charge storage via proton charge assembly contributes to the rational design of ligands for energy storage applications.

3.
J Phys Chem Lett ; 14(23): 5377-5385, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37278536

ABSTRACT

We show that the ability of the ligand to reorganize the electric double layer (EDL) often dominates the electrocatalysis contrary to their inductive effect in the spectrochemical series, leading to counterintuitive electrocatalysis. With water oxidation and chlorine evolution as the probe reactions, the same catalytic entity with carboxy functionalized ligand exhibited surprisingly higher electrochemical activity in comparison to the aggressively electron-withdrawing nitro functionalized ligands, which is contrary to their actual location in the spectrochemical series. Spectroscopic and electrochemical analyses suggest the enrichment of catalytically active species in the carboxy substituted ligand via proton charge assembly in the EDL that in turn enhances the kinetics of the overall electrochemical process. This demonstration of less obvious ligands becoming indispensable in electrocatalysis suggests a blind designing of ligands solely based on their inductive effect should be reconsidered as it will prevent the utilization of the maximum potential of the molecule in electrocatalysis.

4.
J Colloid Interface Sci ; 630(Pt A): 477-483, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36265348

ABSTRACT

The OH-/H+ dual-ion gradient has a hidden electromotive force of 0.82 V under standard conditions; however, its non-redox nature completely prevents its direct interconversion as electrical driving force. We show by using organic molecules whose heterogeneous electron transfer is pH dependent, OH-/H+ dual-ion energy can be directly harvested as electrical driving force for performing simultaneous electro-organic synthesis and hydrogen fuel production in an electricity effective manner. To demonstrate this dual-ion gradient assisted electro-organic synthesis, 5-hydroxymethylfurfural (HMF) is chosen as the model molecule because of the immense techno commercial applications of its oxidized products. This dual-ion assisted device only required âˆ¼1 V to provide a current density of 50 mA/cm2 and for achieving the same rate; the traditional state-of-the-art electrolytic cell required a doubling of the applied potential. The dual-ion gradient assisted device can convert biomass-derived HMF to economically important FDCA with âˆ¼90 % yield and âˆ¼87 % Faradaic efficiency with simultaneous H2 fuel production at a potential as low as 1 V.


Subject(s)
Electricity , Hydrogen , Chemistry Techniques, Synthetic
5.
iScience ; 25(10): 105179, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36238901

ABSTRACT

We have investigated the role of ligand isomerism in modulating the mechanisms and kinetics associated with charge/discharge chemistry of an aqueous metal-air battery. The dominant electron-withdrawing inductive effect (-I effect) and the diminished electron-withdrawing resonance effect (-R effect) in the α-NO2 isomer noticeably diminishes the rate of oxygen reduction (ORR) and oxygen evolution reactions (OER) on the catalytic Co-center. In their ß-counterpart, the cumulative -I and -R effects noticeably enhance the OER and ORR kinetics on the same catalytic Co-center. Therefore, the regioisomerism of the -NO2 functionality amplifies the kinetics of ORR/OER without influencing their mechanistic pathways. When isomeric electrocatalysts are integrated to aid the charge chemistry of a Zn-air battery, the overpotential could be decreased by ∼250 mV with ß-NO2 isomer leading to a round-trip efficiency as high as 60%. This work contributes to the design of novel molecular platforms to target the overall round-trip efficiency of energy storage and conversion devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...