Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Dev Ind Pharm ; : 1-15, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38180322

ABSTRACT

BACKGROUND: Therapeutic resistance fails cancer treatment. Drug-nanoparticle combinations overcome resistance. Sanguinarine-conjugated nanoparticles may boost sanguinarine's anticancer effects. METHODS: Sanguinarine, HPMC-NPs, and doxorubicin were tested on Adriamycin-resistant MCF-7/ADR breast cancer cells, parent-sensitive MCF-7, and MCR-5 normal cells (DX). RESULTS: Regular distribution, 156 nm diameter, <1 µm average size, 100% intensity-SN is therapeutic. Furthermore, the obtained NPs showed PDI = 0.145, zeta-potential=-37.6, and EE%=90.5%. DX sensitized MCF-7 cells (IC50 = 1.4 µM) more than MCF-7/ADR cells (IC50 = 27 µM) with RR = 19.3. SA and SN were more toxic to MCF-7/ADR cells (overexpressed with P-gp) than their sensitive parent MCF-7 cells (IC50 = 4 µM, RR = 0.6 and 0.6 µM, RR = 0.7). MCR-5 normal lung cells were more resistant to SA (IC50 = 7.2 µM) and SN (IC50 = 1.6 µM) with a selection index > 2. Synergistic cytotoxic interactions reduced the IC50 from 27 µM to 1.6 (CI = 0.1) and 0.9 (CI = 0.4) after DX and nontoxic dosages (IC20) of SA and SN. DS and SN killed 27.1% and 39.4% more cells than DX (7.7%), SA (4.9%), SN (5.5%), or untreated control (0.3%). DS and DSN lowered CCND1 and survival in MCF-7/ADR cells while raising p21 and Casp3 gene and protein expression. CONCLUSIONS: Cellular and molecular studies suggested adjuvant chemosensitizers SA and SN to reverse MDR in breast cancer cells.

2.
Molecules ; 28(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37110649

ABSTRACT

Multidrug resistance (MDR) is the major complex mechanism that causes the failure of chemotherapy, especially with drugs of natural origin such as doxorubicin (DOX). Intracellular drug accumulation and detoxification are also involved in cancer resistance by reducing the susceptibility of cancer cells to death. This research aims to identify the volatile composition of Cymbopogon citratus (lemon grass; LG) essential oil and compare the ability of LG and its major compound, citral, to modulate MDR in resistant cell lines. The composition of LG essential oil was identified using gas chromatography mass spectrometry (GC-MS). In addition, a comparison of the modulatory effects of LG and citral, performed on breast (MCF-7/ADR), hepatic (HepG-2/ADR), and ovarian (SKOV-3/ADR) MDR cell lines, were compared to their parent sensitive cells using the MTT assay, ABC transporter function assays, and RT-PCR. Oxygenated monoterpenes (53.69%), sesquiterpene hydrocarbons (19.19%), and oxygenated sesquiterpenes (13.79%) made up the yield of LG essential oil. α-citral (18.50%), ß-citral (10.15%), geranyl acetate (9.65%), ylangene (5.70), δ-elemene (5.38%), and eugenol (4.77) represent the major constituents of LG oil. LG and citral (20 µg/mL) synergistically increased DOX cytotoxicity and lowered DOX dosage by >3-fold and >1.5-fold, respectively. These combinations showed synergism in the isobologram and CI < 1. DOX accumulation or reversal experiment confirmed that LG and citral modulated the efflux pump function. Both substances significantly increased DOX accumulation in resistant cells compared to untreated cells and verapamil (the positive control). RT-PCR confirmed that LG and citral targeted metabolic molecules in resistant cells and significantly downregulated PXR, CYP3A4, GST, MDR1, MRP1, and PCRP genes. Our results suggest a novel dietary and therapeutic strategy combining LG and citral with DOX to overcome multidrug resistance in cancer cells. However, these results should be confirmed by additional animal experiments before being used in human clinical trials.


Subject(s)
Cymbopogon , Neoplasms , Oils, Volatile , Animals , Humans , Cymbopogon/chemistry , Drug Resistance, Multiple , Doxorubicin/pharmacology , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Drug Resistance, Neoplasm , Neoplasms/drug therapy
3.
Pharmacology ; 101(1-2): 9-21, 2018.
Article in English | MEDLINE | ID: mdl-28926842

ABSTRACT

AIMS: This study is aimed at evaluating the antidiabetic effects of thymoquinone (TQ) on streptozotocin (STZ)-induced diabetes in rats, and exploring the possible underlying mechanisms. METHODS: Diabetes was induced in adult male Wistar rats by intraperitoneal injection of freshly prepared STZ (65 mg/kg). After disease induction, 42 rats were equally assigned to: controls, STZ-diabetic group, and STZ-diabetic group treated with oral TQ (35 mg/kg/day) for 5 weeks. Fasting blood glucose levels were determined weekly, and the animals were euthanized at day 38 post-STZ injection. Blood samples were assessed for glucose-insulin homeostasis parameters (plasma glucose, glycated hemoglobin, serum insulin, homeostatic model assessment of insulin resistance, and insulin sensitivity index) and lipid profile. Resected pancreases were subjected to histological examination and immunohistochemical or enzyme-linked immunosorbent assay assessment to determine the pancreatic expression of insulin sensitizing ß-cells, anti-apoptotic protein "survivin," apoptosis-inducer "caspase-3," prototypic angiogenic factors (vascular endothelial growth factor [VEGF] and endothelial cluster of differentiation 31 [CD31]), pro- and anti-inflammatory cytokines (interleukin-1beta [IL-1ß] and interleukin-10 [IL-10], respectively), thiobarbituric acid reactive substances (TBARS), total glutathione (GSH), and superoxide dismutase (SOD). The hepato-renal statuses were assessed biochemically and histologically. RESULTS: Therapy with TQ markedly improved the integrity of pancreatic islets, glucose-insulin homeostasis-related parameters, lipid profile parameters, and hepato-renal functional and histomorphological statuses that collectively were severely deteriorated in untreated diabetic group. Mechanistically, TQ therapy efficiently increased insulin producing ß-cells, upregulated survivin, VEGF, CD31, IL-10, GSH and SOD, and downregulated caspase-3, IL-1ß, and TBARSs in the pancreatic tissues of STZ-diabetic rats. CONCLUSIONS: These findings prove the anti-diabetic potential of TQ and its efficacy in regenerating pancreatic ß-cells and ameliorating pancreatic inflammation and oxidative stress, and highlight its novelty in repressing apoptosis of ß-cells and enhancing islet revascularization in STZ-diabetic rats. Further studies are required to support these findings and realize their possible clinical significance.


Subject(s)
Benzoquinones/pharmacology , Benzoquinones/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Animals , Blood Glucose/analysis , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Glutathione/metabolism , Insulin/blood , Insulin/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/pathology , Interleukin-10/metabolism , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Male , Microtubule-Associated Proteins/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Rats, Wistar , Superoxide Dismutase/metabolism , Survivin , Vascular Endothelial Growth Factor A/metabolism
4.
Asian Pac J Trop Med ; 10(7): 701-709, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28870347

ABSTRACT

OBJECTIVE: To explore inhibitory effects of genome-specific, chemically synthesized siRNAs (small interference RNA) against NS3 gene of hepatitis C virus (HCV) 1a genotype in stable Huh-7 (human hepatoma) cells as well as against viral replication in serum-inoculated Huh-7 cells. METHODS: Stable Huh-7 cells persistently expressing NS3 gene were produced under antibiotic gentamycin (G418) selection. The cell clones resistant to 1000 µg antibiotic concentration (G418) were picked as stable cell clones. The NS3 gene expression in stable cell clone was confirmed by RT-PCR and Western blotting. siRNA cell cytotoxicity was determined by MTT cell proliferation assay. Stable cell lines were transfected with sequence specific siRNAs and their inhibitory effects were determined by RT-PCR, real-time PCR and Western blotting. The viral replication inhibition by siRNAs in serum inoculated Huh-7 cells was determined by real-time PCR. RESULTS: RT-PCR and Western blot analysis confirmed NS3 gene and protein expression in stable cell lines on day 10, 20 and 30 post transfection. MTT cell proliferation assay revealed that at most concentrated dose tested (50 nmol/L), siRNA had no cytotoxic effects on Huh-7 cells and cell proliferation remained unaffected. As demonstrated by the siRNA time-dependent inhibitory analysis, siRNA NS3-is44 showed maximum inhibition of NS3 gene in stable Huh-7 cell clones at 24 (80%, P = 0.013) and 48 h (75%, P = 0.002) post transfection. The impact of siRNAs on virus replication in serum inoculated Huh-7 cells also demonstrated significant decrease in viral copy number, where siRNA NS3-is44 exhibited 70% (P < 0.05) viral RNA reduction as compared to NS3-is33, which showed a 64% (P < 0.05) decrease in viral copy number. siRNA synergism (NS3-is33 + NS3-is44) decreased viral load by 84% (P < 0.05) as compared to individual inhibition by each siRNA (i.e., 64%-70% (P < 0.05)) in serum-inoculated cells. Synthetic siRNAs mixture (NS5B-is88 + NS3-is33) targeting different region of HCV genome (NS5B and NS3) also decreased HCV viral load by 85% (P < 0.05) as compared to siRNA inhibitory effects alone (70% and 64% respectively, P < 0.05). CONCLUSIONS: siRNAs directed against NS3 gene significantly decreased mRNA and protein expression in stable cell clones. Viral replication was also vividly decreased in serum infected Huh-7 cells. Stable Huh-7 cells expressing NS3 gene is helpful to develop anti-hepatitis C drug screening assays. siRNA therapeutic potential along with other anti-HCV agents can be considered against hepatitis C.

5.
Diabetol Metab Syndr ; 8: 34, 2016.
Article in English | MEDLINE | ID: mdl-27148410

ABSTRACT

BACKGROUND: Helicobacter pylori (H. pylori) infection is reported to be associated with various extragastrointestinal conditions such as insulin resistance, diabetes mellitus and metabolic syndrome. H. pylori infection and type 2 diabetes mellitus (T2DM) are associated with oxidative stress, this cross-relation between H. pylori induced infection in T2DM and oxidative damage is still debated. Thus, the question arises whether an increase in the serum level of 8-OHdG and Ox-LDL will occurs in patients with T2DM infected H. pylori; this will be through determination and compare frequency of H. pylori infection in T2DM and non-diabetic patients. METHODS: 100 patients presented with history of epigastric discomfort for more than 1 month; 50 patients with T2DM and 50 non-diabetics. Anti-H. pylori IgG using ELISA, fasting and postprandial glucose level, glycated hemoglobin (HbA1c) and body mass index (BMI) was calculated. Serum 8-OHdG and Ox-LDL was measured using ELISA for the 100 patients and 50 control subject. RESULTS: Rates of H. pylori infection of T2DM and non-diabetic were 66 and 58 %, respectively, (p = 0.001). H. pylori IgG antibody was not correlated with HbA1c either in T2DM (p = 0.06) or non-diabetic (p = 0.25). Serum 8-OHdG level in T2DM with positive H. pylori infection showed a significant difference compared to non-diabetics with positive H. pylori infection (p = 0.001) and higher than that in T2DM with negative H. pylori. A correlation between 8-OHdG concentration and HbA1c in T2DM patients infected with H. pylori was observed (r = 0.39, p = 0.02). Serum Ox-LDL level in T2DM with positive H. pylori infection showed a significant difference compared to diabetics with both negative H. pylori infection and in non-diabetics with positive H. pylori infection (p = 0.001). CONCLUSIONS: Increased levels of oxidative DNA damage (8-OHdG) and Ox-LDL suggest the mechanistic link between H. pylori infection combined with diabetes and increased generation of ROS and could play as an important image for high risk to atherosclerosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...