Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
J Pharmacol Exp Ther ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858090

ABSTRACT

Streptolysin O (SLO), a bacterial toxin produced by common hemolytic streptococci, including Streptococcus pyogenes and resident microbiota, may be associated with inflammation in the cardiovascular system. We previously reported that short-term treatment with SLO at relatively high concentrations (10-1000 ng/mL) diminished acetylcholine-induced, endothelial-dependent relaxation in a concentration-dependent manner. However, the vascular function effects of long-term exposure to SLO at lower concentrations are poorly understood. In this study, treatment of rat aorta with endothelium with SLO (0.1-10 ng/mL) for 72 h inhibited contractions in response to norepinephrine and phenylephrine in a concentration-dependent manner, and this effect was abolished by endothelium denudation. We also observed decreased endothelium-dependent relaxation in aorta treated with a lower concentration of SLO (10 ng/mL) for 72 h. Long-term treatment with SLO (10 ng/mL) increased the expression of iNOS in aorta with endothelium but not aorta without endothelium, and the SLO-induced decrease in contraction was restored by treatment with NOS inhibitors. Pharmacologic and gene-mutant analyses further indicated that SLO-induced vascular dysfunction and iNOS upregulation are mediated through the TLR4/NOX2/ROS/p38 MAPK pathways. In vivo SLO treatment (46.8 pg/kg/min) for 7 days also diminished vascular contraction and relaxation activity in aorta with endothelium. We concluded that long-term treatment with SLO inhibits vascular contractile responses, primarily due to increased iNOS expression in the endothelium through TLR4-mediated pathways. Our present results, together with those of our previous study, suggest that endothelial cells play a key role in the pathophysiologic changes in cardiovascular function associated with long-term exposure to SLO. Significance Statement In the present study, we showed that long-term exposure to streptococcal exotoxin SLO inhibits agonist-induced contraction in rat aorta with endothelium, driven primarily by elevated iNOS production via NOX2-mediated ROS production through TLR4 activation on endothelial cells. In vivo treatment with SLO for 7 days also diminished vascular contraction and relaxation, providing evidence of possible pathophysiologic roles of SLO in endothelium-dependent vascular homeostasis.

2.
Sci Rep ; 13(1): 15197, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37709803

ABSTRACT

One feature of hypertension is a microbial imbalance with increased intestinal permeability. In this study, we examined whether an alteration in the microbiota affects blood pressure and intestinal permeability in spontaneously hypertensive rats (SHRs). We performed a 16S metagenome analysis of feces from 10- to 15-week-old SHRs using a synthetic long-read sequencing approach, and found a candidate for the microbiome treatment, Ligilactobacillus murinus (L. murinus), that was robustly decreased. Oral administration of L. murinus to SHRs for 2 weeks significantly inhibited blood pressure elevation and improved endothelium-dependent vasodilation but did not attenuate enhanced vascular contraction in SHR mesenteric arteries. The proximal colon of SHRs exhibited increased intestinal permeability with decreased levels of the tight junction protein claudin 4, morphological changes such as decreased intestinal crypts and elevated TNF-α levels, which was reversed by treatment with L. murinus. Consistent with these intestinal phenotypes, plasma lipopolysaccharides levels were elevated in SHR but decreased following L. murinus administration. We concluded that oral administration of L. murinus to SHRs exerts protective effects on intestinal permeability via restoration of claudin 4 expression and reversal of morphologic disorder, which may improve low-grade endotoxemia and thus reduce development of hypertension via recovery of endothelial vasodilating functions.


Subject(s)
Hypertension , Intestines , Animals , Rats , Blood Pressure , Rats, Inbred SHR , Claudin-4
4.
Am J Physiol Heart Circ Physiol ; 323(6): H1118-H1129, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36306212

ABSTRACT

Lymph capillary network can be expected to alter blood pressure via regulating interstitial electrolyte and volume balance. However, the pathophysiology of lymphatic vessel in hypertension is poorly understood. In this study, we examined lymph vessel function focusing on contractile response in hypertensive rats. It was found that thoracic ducts isolated from adult (10-14 wk old) spontaneously hypertensive rats (SHRs) exhibited increased agonist-mediated contraction compared with age-matched Wistar-Kyoto (WKY) rats, whereas lymphatic contractions in younger (4 wk old) SHRs, exhibiting normal blood pressure, were no different compared with age-matched control rats. Tight regulation of blood pressure with antihypertensive drugs (hydrochlorothiazide/hydralazine) did not prevent the augmented lymphatic contraction in adult SHRs; however, treatment of SHRs with angiotensin II (ANG II) type 1 receptor blocker (losartan) for 6 wk abolished the augmentation of lymphatic contractions. In addition, ANG II infusion in Wistar rat caused augmented lymphatic contractile responses in the thoracic duct. The augmented contractions in adult SHRs were diminished by a ROCK inhibitor (Y-27632). Consistently, the thoracic ducts in SHRs showed significantly higher phosphorylation of myosin phosphatase targeting protein-1 than WKY rats. Furthermore, gene expression profiling of adult SHR lymphatics showed marked loss of regulator of G-protein signaling 16 (RGS16) mRNA, which was confirmed by the real-time PCR. Treatment with the RGS inhibitor CCG-63808 enhanced contractions in thoracic ducts from Wistar rats, which were abolished by the ROCK inhibitor. It is concluded that lymphatic contractile function was enhanced in hypertensive model rats, which could be mediated by dysregulation of the ROCK pathway possibly through RGS16.NEW & NOTEWORTHY Lymph capillary controls interstitial electrolyte and volume balance, which may blunt increased blood pressure. However, the function of lymphatic vessel in hypertension is poorly understood. Our study showed that the lymphatic smooth muscle contractility is hyperreactive in two different hypertensive models. The lymphatic dysfunction could be mediated by dysregulation of ROCK pathway possibly through RGS16. The present finding supports a new concept showing the functional relationship between lymphatic contractile activity and hypertension.


Subject(s)
Hypertension , Lymphatic Vessels , Rats , Animals , Rats, Inbred WKY , rho-Associated Kinases , Rats, Inbred SHR , Blood Pressure , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Lymphatic Vessels/metabolism
5.
Nihon Yakurigaku Zasshi ; 157(5): 311-315, 2022.
Article in Japanese | MEDLINE | ID: mdl-36047142

ABSTRACT

Emerging evidences indicate that a microbial imbalance (dysbiosis) is linked to several diseases including metabolic cardiovascular diseases. A fecal microbiota transplantation from hypertensive human donor to germ-free mice caused blood pressure elevation. In addition, there is a report demonstrating that angiotensin II-induced hypertension and vascular dysfunction were attenuated in germ-free mice, suggesting that gut microbiome may mediate development of hypertension. Although detailed mechanism by which the dysbiosis induces an increased blood pressure remains unknown, changes in microbiome may modify host immune systems and induce inflammatory dysfunction in cardiovascular system, resulting in dysregulation of blood pressure. Some cohort studies demonstrated an association between a higher abundance of Streptococcaceae spp. and blood pressure. One recent report demonstrated that an increasing number of gram-positive Streptococcus was found in the feces of adult spontaneously hypertensive rats with an increased intestinal permeability. We hypothesized that increased bacterial toxin levels derived from gut Streptococcus may be a factor inducing blood pressure dysregulation. In this review, we discuss the possible role of microbiome in cardiovascular disease, especially hypertension.


Subject(s)
Cardiovascular Diseases , Gastrointestinal Microbiome , Hypertension , Metabolic Diseases , Metabolic Syndrome , Adult , Animals , Blood Pressure , Dysbiosis , Humans , Hypertension/etiology , Hypertension/metabolism , Metabolic Syndrome/etiology , Mice , Rats , Rats, Inbred SHR
6.
J Pharmacol Exp Ther ; 379(2): 117-124, 2021 11.
Article in English | MEDLINE | ID: mdl-34389653

ABSTRACT

Streptolysin O (SLO) is produced by common hemolytic streptococci that cause a wide range of diseases from pharyngitis to life-threatening necrotizing fasciitis and toxic shock syndrome. Although the importance of SLO in invasive hemolytic streptococcus infection has been well demonstrated, the role of circulating SLO in noninvasive infection remains unclear. The aim of this study was to characterize the pharmacological effect of SLO on vascular functions, focusing on cellular signaling pathways. In control Wistar rats, SLO treatment (1-1000 ng/ml) impaired acetylcholine-induced endothelial-dependent relaxation in the aorta and second-order mesenteric artery in a dose-dependent manner without any effects on sodium nitroprusside-induced endothelium-independent relaxation or agonist-induced contractions. SLO also increased phosphorylation of the endothelial NO synthase (eNOS) inhibitory site at Thr495 in the aorta. Pharmacological analysis indicated that either endothelial dysfunction or eNOS phosphorylation was mediated by protein kinase Cß (PKCß), but not by the p38 mitogen-activated protein kinase pathway. Consistent with this, SLO increased phosphorylation levels of protein kinase C substrates in the aorta. In vivo study of control Wistar rats indicated that intravenous administration of SLO did not change basal blood pressure but significantly counteracted the acetylcholine-induced decrease in blood pressure. Interestingly, plasma anti-SLO IgG levels were significantly higher in 10- to 15-week-old spontaneously hypertensive rats compared with age-matched control rats (P < 0.05). These findings demonstrated that SLO causes vascular endothelial dysfunction, which is mediated by PKCß-induced phosphorylation of the eNOS inhibitory site. SIGNIFICANCE STATEMENT: This study showed for the first time that in vitro exposure of vascular tissues to SLO impairs endothelial function, an effect that is mediated by protein kinase C ß-induced phosphorylation of the endothelial NO synthase inhibitory site. Intravenous administration of SLO in control and hypertensive rats blunted the acetylcholine-induced decrease in blood pressure, providing evidence for a possible role of SLO in dysregulation of blood pressure.


Subject(s)
Endothelium, Vascular/drug effects , Endothelium, Vascular/enzymology , Protein Kinase C beta/metabolism , Streptolysins/toxicity , Vasoconstriction/drug effects , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/enzymology , Bacterial Proteins/toxicity , Dose-Response Relationship, Drug , Male , Mesenteric Arteries/drug effects , Mesenteric Arteries/enzymology , Organ Culture Techniques , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Rats, Wistar , Vasoconstriction/physiology
7.
J Smooth Muscle Res ; 57(0): 1-7, 2021.
Article in English | MEDLINE | ID: mdl-33658456

ABSTRACT

This review highlights molecular mechanisms of anti-inflammatory and protective effects of the nuclear transcription factor, peroxisome proliferator-activated receptor γ (PPARγ) in vascular tissue. PPARγ is an ubiquitously expressed nuclear factor, and well-studied in adipose tissue and inflammatory cells. Additionally, beneficial effects of vascular PPARγ's on atherosclerosis and vascular remodeling/dysfunction have been reported although the detailed mechanism remains to be completely elucidated. Clinical and basic studies have shown that the synthetic PPARγ ligands, thiazolidinediones (TZDs), have protective effects against cardiovascular diseases such as atherosclerosis. Recent studies utilizing genetic tools suggested that those protective effects of TZDs on cardiovascular diseases are not due to a consequence of improvement of insulin resistance, but may be due to a direct effect on PPARγ's in vascular endothelial and smooth muscle cells. In this review, we discuss proposed mechanisms by which the vascular PPARγ regulates vascular inflammation and remodeling/dysfunction especially in smooth muscle cells.


Subject(s)
Inflammation , PPAR gamma , Thiazolidinediones , Humans , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle
8.
Cardiovasc Res ; 117(1): 308-319, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32428209

ABSTRACT

AIMS: Salt-sensitive (SS) hypertension is accompanied by impaired vasodilation in the systemic and renal circulation. However, the causal relationship between vascular dysfunction and salt-induced hypertension remains controversial. We sought to determine whether primary vascular dysfunction, characterized by a failure to vasodilate during salt loading, plays a causal role in the pathogenesis of SS hypertension. METHODS AND RESULTS: Mice selectively expressing a peroxisome proliferator-activated receptor γ dominant-negative mutation in vascular smooth muscle (S-P467L) exhibited progressive SS hypertension during a 4 week high salt diet (HSD). This was associated with severely impaired vasodilation in systemic and renal vessels. Salt-induced impairment of vasodilation occurred as early as 3 days after HSD, which preceded the onset of SS hypertension. Notably, the overt salt-induced hypertension in S-P467L mice was not driven by higher cardiac output, implying elevations in peripheral vascular resistance. In keeping with this, HSD-fed S-P467L mice exhibited decreased smooth muscle responsiveness to nitric oxide (NO) in systemic vessels. HSD-fed S-P467L mice also exhibited elevated albuminuria and a blunted increase in urinary NO metabolites which was associated with blunted renal blood flow and increased sodium retention mediated by a lack of HSD-induced suppression of NKCC2. Blocking NKCC2 function prevented the salt-induced increase in blood pressure in S-P467L mice. CONCLUSION: We conclude that failure to vasodilate in response to salt loading causes SS hypertension by restricting renal perfusion and reducing renal NO through a mechanism involving NKCC2 in a mouse model of vascular peroxisome proliferator-activated receptor γ impairment.


Subject(s)
Blood Pressure , Hypertension/physiopathology , Kidney/blood supply , Muscle, Smooth, Vascular/physiopathology , Renal Circulation , Vasodilation , Animals , Carotid Arteries/metabolism , Carotid Arteries/physiopathology , Disease Models, Animal , Hypertension/etiology , Hypertension/genetics , Hypertension/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Smooth, Vascular/metabolism , Mutation , Nitric Oxide/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Renal Artery/metabolism , Renal Artery/physiopathology , Sodium Chloride, Dietary , Solute Carrier Family 12, Member 1/metabolism
9.
Hypertension ; 76(2): 598-606, 2020 08.
Article in English | MEDLINE | ID: mdl-32536276

ABSTRACT

The lymphatic system is involved in the pathogenesis of edema, inflammation, and cancer metastasis. Because lymph vessels control fluid electrolytes and volume balance, changes in lymphatic activity can be expected to alter systemic blood pressure. This study examined possible changes in lymphatic contractile properties in spontaneously hypertensive rats (SHR). Thoracic ducts isolated from 10- to 12-week-old SHR exhibited either decreased acetylcholine-induced endothelium-dependent relaxation or sodium nitroprusside-induced endothelium-independent relaxation compared with age-matched Wister-Kyoto rats. The impairment in acetylcholine responsiveness was more pronounced than sodium nitroprusside responsiveness. N-Nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor blunted acetylcholine-induced relaxation in Wister-Kyoto rats, indicating an involvement of endothelial nitric oxide production. Endothelial dysfunction in lymph vessels of SHR was attenuated by tempol (a superoxide dismutase mimetic), apocynin, or VAS-2870 (NADPH oxidase inhibitors). Consistent with these observations, nitrotyrosine levels were significantly elevated in SHR, indicative of increased oxidative stress. In addition, protein expression of NADPH oxidase 2 and phosphorylation of p47phox (Ser345) were significantly increased in SHR. Further, SB203580 (a p38 MAPK inhibitor) restored the acetylcholine-induced relaxation in SHR. It is notable that 4-week-old SHR, which exhibited normal blood pressure, did not show any decreased activity of acetylcholine- or sodium nitroprusside-induced relaxation. Additionally, antihypertensive treatment of 4-week-old SHR with hydrochlorothiazide and reserpine or hydrochlorothiazide and hydralazine for 6 weeks completely restored lymphatic endothelial dysfunction. We conclude that contractile activity of lymphatic vessels is functionally impaired with the development of increasing blood pressure, which is mediated through increased oxidative stress via the p38 MAPK/NADPH oxidase 2 pathway.


Subject(s)
Blood Pressure/physiology , Endothelium, Vascular/physiopathology , Hypertension/physiopathology , Lymphatic Vessels/physiopathology , Oxidative Stress/physiology , Acetylcholine/pharmacology , Animals , Blood Pressure/drug effects , Endothelium, Vascular/drug effects , Enzyme Inhibitors/pharmacology , Lymphatic Vessels/drug effects , Male , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase Type III/antagonists & inhibitors , Nitroprusside/pharmacology , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Vasodilation/drug effects , Vasodilation/physiology , Vasodilator Agents/pharmacology
10.
Nihon Yakurigaku Zasshi ; 154(2): 56-60, 2019.
Article in Japanese | MEDLINE | ID: mdl-31406043

ABSTRACT

Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand activated transcription factor known to regulate fatty acid metabolism. Thiazolidinediones (TZDs), PPARγ synthetic agonists, currently used to treat patients with type 2 diabetes, have been shown to lower the blood pressure and protect against vascular diseases such as atherosclerosis. In line with these findings, it has been reported that individuals with loss-of-function mutations of PPARγ developed sever early-onset hypertension in addition to metabolic abnormalities. Accumulating evidences suggest PPARγ in the vasculature has protective effects on cardiovascular disease despite unclear mechanism. Because of ubiquitous expression of PPARγ, TZDs are well-known to be associated with serious side effects such as weight gain, fluid retention, and bone fractures. Thus identification of mechanisms on tissue-specific PPARγ activity may lead to the development of targeted treatment which is characterized by no deleterious effects. This review discusses role of PPARγ in cardiovascular disease.


Subject(s)
Cardiovascular Diseases/genetics , PPAR gamma/genetics , Thiazolidinediones/pharmacology , Transcription Factors/genetics , Blood Pressure , Diabetes Mellitus, Type 2/drug therapy , Humans , PPAR gamma/agonists
11.
Hypertension ; 74(1): 173-183, 2019 07.
Article in English | MEDLINE | ID: mdl-31104564

ABSTRACT

Preeclampsia is a hypertensive disorder of pregnancy associated with vascular dysfunction and cardiovascular risk to offspring. We hypothesize that endothelial PPARγ (peroxisome proliferator-activated receptor-γ) provides cardiovascular protection in offspring from pregnancies complicated by hypertension. C57BL/6J dams were bred with E-V290M sires, which express a dominant-negative allele of PPARγ selectively in the endothelium. Arginine vasopressin was infused throughout gestation. Vasopressin elevated maternal blood pressure at gestational day 14 to 15 and urinary protein at day 17 consistent. Systolic blood pressure and vasodilation responses to acetylcholine were similar in vasopressin-exposed offspring compared to offspring from control pregnancies. We treated offspring with a subpressor dose of angiotensin II to test if hypertension during pregnancy predisposes offspring to hypertension. Male and female angiotensin II-treated E-V290M offspring from vasopressin-exposed but not control pregnancy exhibited significant impairment in acetylcholine-induced relaxation in carotid artery. Endothelial dysfunction in angiotensin II-treated E-V290M vasopressin-exposed offspring was attenuated by tempol, an effect which was more prominent in male offspring. Nrf2 (nuclear factor-E2-related factor) protein levels were significantly elevated in aorta from male E-V290M offspring, but not female offspring compared to controls. Blockade of ROCK (Rho-kinase) signaling and incubation with a ROCK2-specific inhibitor improved endothelial function in both male and female E-V290M offspring from vasopressin-exposed pregnancy. Our data suggest that interference with endothelial PPARγ in offspring from vasopressin-exposed pregnancies increases the risk for endothelial dysfunction on exposure to a cardiovascular stressor in adulthood. This implies that endothelial PPARγ provides protection to cardiovascular stressors in offspring of a pregnancy complicated by hypertension and perhaps in preeclampsia.


Subject(s)
Angiotensin II/pharmacology , Endothelium, Vascular/metabolism , Hypertension, Pregnancy-Induced/genetics , NF-kappa B/metabolism , PPAR gamma/genetics , Pregnancy, Animal , Acetylcholine/pharmacology , Animals , Animals, Newborn , Female , Gene Expression Regulation, Developmental , Humans , Hypertension, Pregnancy-Induced/physiopathology , Mice, Inbred C57BL , Oxidative Stress/physiology , Pregnancy , Protective Agents/pharmacology , Signal Transduction/genetics
12.
J Clin Invest ; 129(6): 2318-2332, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30896450

ABSTRACT

Mice selectively expressing PPARγ dominant negative mutation in vascular smooth muscle exhibit RhoBTB1-deficiency and hypertension. Our rationale was to employ genetic complementation to uncover the mechanism of action of RhoBTB1 in vascular smooth muscle. Inducible smooth muscle-specific restoration of RhoBTB1 fully corrected the hypertension and arterial stiffness by improving vasodilator function. Notably, the cardiovascular protection occurred despite preservation of increased agonist-mediated contraction and RhoA/Rho kinase activity, suggesting RhoBTB1 selectively controls vasodilation. RhoBTB1 augmented the cGMP response to nitric oxide by restraining the activity of phosphodiesterase 5 (PDE5) by acting as a substrate adaptor delivering PDE5 to the Cullin-3 E3 Ring ubiquitin ligase complex for ubiquitination inhibiting PDE5. Angiotensin-II infusion also caused RhoBTB1-deficiency and hypertension which was prevented by smooth muscle specific RhoBTB1 restoration. We conclude that RhoBTB1 protected from hypertension, vascular smooth muscle dysfunction, and arterial stiffness in at least two models of hypertension.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Hypertension/prevention & control , Muscle, Smooth, Vascular/metabolism , Vascular Stiffness , Vasodilation , rho GTP-Binding Proteins/metabolism , Angiotensin II/adverse effects , Angiotensin II/pharmacology , Animals , Cullin Proteins/genetics , Cullin Proteins/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 5/genetics , Disease Models, Animal , HEK293 Cells , Humans , Hypertension/chemically induced , Hypertension/genetics , Hypertension/metabolism , Mice , Mice, Transgenic , Muscle, Smooth, Vascular/pathology , Nitric Oxide/genetics , Nitric Oxide/metabolism , rho GTP-Binding Proteins/genetics , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism
13.
Hypertension ; 72(5): 1227-1235, 2018 11.
Article in English | MEDLINE | ID: mdl-30354810

ABSTRACT

Low-salt diet is beneficial in salt-sensitive hypertension but may provoke cardiovascular risk in patients with heart failure, diabetes mellitus, or other cardiovascular abnormalities because of endogenous renin-angiotensin system activation. PPAR (peroxisome proliferator-activated receptor)-γ is a transcription factor which promotes an antioxidant pathway in the endothelium. We studied transgenic mice expressing a dominant-negative mutation in PPAR-γ selectively in the endothelium (E-V290M) to test the hypothesis that endothelial PPAR-γ plays a protective role in response to low salt-mediated renin-angiotensin system activation. Plasma renin and Ang II (angiotensin II) were significantly and equally increased in all mice fed low salt for 6 weeks. Vasorelaxation to acetylcholine was not affected in basilar artery from E-V290M at baseline but was significantly and selectively impaired in E-V290M after low salt. Unlike basilar artery, low salt was not sufficient to induce vascular dysfunction in carotid artery or aorta. Endothelial dysfunction in the basilar artery from E-V290M mice fed low salt was attenuated by scavengers of superoxide, inhibitors of NADPH oxidase, or blockade of the Ang II AT1 (angiotensin type-1) receptor. Simultaneous AT1 and AT2 receptor blockade revealed that the restoration of endothelial function after AT1 receptor blockade was not a consequence of AT2 receptor activation. We conclude that interference with PPAR-γ in the endothelium produces endothelial dysfunction in the cerebral circulation in response to low salt-mediated activation of the endogenous renin-angiotensin system, mediated at least in part, through AT1 receptor activation and perturbed redox homeostasis. Moreover, our data suggest that the cerebral circulation may be particularly sensitive to inhibition of PPAR-γ activity and renin-angiotensin system activation.


Subject(s)
Endothelium, Vascular/metabolism , Nuclear Receptor Coactivators/metabolism , Renin-Angiotensin System/physiology , Acetylcholine/pharmacology , Angiotensin II/blood , Animals , Basilar Artery/drug effects , Basilar Artery/metabolism , Endothelium, Vascular/drug effects , Male , Mice , Mice, Transgenic , Nuclear Receptor Coactivators/genetics , Renin/blood , Renin-Angiotensin System/drug effects , Vasodilation/drug effects
14.
Hypertension ; 70(1): 174-182, 2017 07.
Article in English | MEDLINE | ID: mdl-28507170

ABSTRACT

Selective expression of dominant negative (DN) peroxisome proliferator-activated receptor γ (PPARγ) in vascular smooth muscle cells (SMC) results in hypertension, atherosclerosis, and increased nuclear factor-κB (NF-κB) target gene expression. Mesenteric SMC were cultured from mice designed to conditionally express wild-type (WT) or DN-PPARγ in response to Cre recombinase to determine how SMC PPARγ regulates expression of NF-κB target inflammatory genes. SMC-specific overexpression of WT-PPARγ or agonist-induced activation of endogenous PPARγ blunted tumor necrosis factor α (TNF-α)-induced NF-κB target gene expression and activity of an NF-κB-responsive promoter. TNF-α-induced gene expression responses were enhanced by DN-PPARγ in SMC. Although expression of NF-κB p65 was unchanged, nuclear export of p65 was accelerated by WT-PPARγ and prevented by DN-PPARγ in SMC. Leptomycin B, a nuclear export inhibitor, blocked p65 nuclear export and inhibited the anti-inflammatory action of PPARγ. Consistent with a role in facilitating p65 nuclear export, WT-PPARγ coimmunoprecipitated with p65, and WT-PPARγ was also exported from the nucleus after TNF-α treatment. Conversely, DN-PPARγ does not bind to p65 and was retained in the nucleus after TNF-α treatment. Transgenic mice expressing WT-PPARγ or DN-PPARγ specifically in SMC (S-WT or S-DN) were bred with mice expressing luciferase controlled by an NF-κB-responsive promoter to assess effects on NF-κB activity in whole tissue. TNF-α-induced NF-κB activity was decreased in aorta and carotid artery from S-WT but was increased in vessels from S-DN mice. We conclude that SMC PPARγ blunts expression of proinflammatory genes by inhibition of NF-κB activity through a mechanism promoting nuclear export of p65, which is abolished by DN mutation in PPARγ.


Subject(s)
Hypertension , Muscle, Smooth, Vascular , NF-kappa B , PPAR gamma/genetics , Transcription Factor RelA/metabolism , Active Transport, Cell Nucleus/drug effects , Animals , Anti-Inflammatory Agents/pharmacology , Cell Nucleus/metabolism , Cells, Cultured , Fatty Acids, Unsaturated/pharmacology , Hypertension/genetics , Hypertension/metabolism , Inflammation/genetics , Inflammation/metabolism , Mice , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/physiopathology , Mutation , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism
15.
Endocrinology ; 157(11): 4266-4275, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27575030

ABSTRACT

Peroxisome proliferator activated receptor (PPARγ) is a nuclear receptor transcription factor that regulates adipogenesis and energy homeostasis. Recent studies suggest PPARγ may mediate some of its metabolic effects through actions in the brain. We used a Cre-recombinase-dependent (using NestinCre) conditionally activatable transgene expressing either wild-type (WT) or dominant-negative (P467L) PPARγ to examine mechanisms by which PPARγ in the nervous system controls energy balance. Inducible expression of PPARγ was evident throughout the brain. Expression of 2 PPARγ target genes, aP2 and CD36, was induced by WT but not P467L PPARγ in the brain. Surprisingly, NesCre/PPARγ-WT mice exhibited severe microcephaly and brain malformation, suggesting that PPARγ can modulate brain development. On the contrary, NesCre/PPARγ-P467L mice exhibited blunted weight gain to high-fat diet, which correlated with a decrease in lean mass and tissue masses, accompanied by elevated plasma GH, and depressed plasma IGF-1, indicative of GH resistance. There was no expression of the transgene in the pancreas but both fasting plasma glucose, and fed and fasted plasma insulin levels were markedly decreased. NesCre/PPARγ-P467L mice fed either control diet or high-fat diet displayed impaired glucose tolerance yet exhibited increased sensitivity to exogenous insulin and increased insulin receptor signaling in white adipose tissue, liver, and skeletal muscle. These observations support the concept that alterations in PPARγ-driven mechanisms in the nervous system play a role in the regulation of growth and glucose metabolic homeostasis.


Subject(s)
Brain/growth & development , Brain/metabolism , PPAR gamma/metabolism , Adipogenesis/genetics , Adipogenesis/physiology , Animals , Body Composition/genetics , Body Composition/physiology , Diet, High-Fat/adverse effects , Energy Metabolism/genetics , Energy Metabolism/physiology , Fasting/blood , Glucose/metabolism , Glucose Tolerance Test , Humans , Insulin/metabolism , Insulin Resistance/genetics , Insulin Resistance/physiology , Insulin-Like Growth Factor I/metabolism , Male , Mice , Mice, Transgenic , Mutation , PPAR gamma/genetics , Receptor, Insulin/genetics , Receptor, Insulin/metabolism
16.
Physiol Genomics ; 48(7): 491-501, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27199455

ABSTRACT

Peroxisome proliferator-activated receptor-γ (PPARγ), a master regulator of adipogenesis, was recently shown to affect energy homeostasis through its actions in the brain. Deletion of PPARγ in mouse brain, and specifically in the pro-opiomelanocortin (POMC) neurons, results in resistance to diet-induced obesity. To study the mechanisms by which PPARγ in POMC neurons controls energy balance, we constructed a Cre-recombinase-dependent conditionally activatable transgene expressing either wild-type (WT) or dominant-negative (P467L) PPARγ and the tdTomato reporter. Inducible expression of both forms of PPARγ was validated in cells in culture, in liver of mice infected with an adenovirus expressing Cre-recombinase (AdCre), and in the brain of mice expressing Cre-recombinase either in all neurons (NES(Cre)/PPARγ-P467L) or selectively in POMC neurons (POMC(Cre)/PPARγ-P467L). Whereas POMC(Cre)/PPARγ-P467L mice exhibited a normal pattern of weight gain when fed 60% high-fat diet, they exhibited increased weight gain and fat mass accumulation in response to a 10% fat isocaloric-matched control diet. POMC(Cre)/PPARγ-P467L mice were leptin sensitive on control diet but became leptin resistant when fed 60% high-fat diet. There was no difference in body weight between POMC(Cre)/PPARγ-WT mice and controls in response to 60% high-fat diet. However, POMC(Cre)/PPARγ-WT, but not POMC(Cre)/PPARγ-P467L, mice increased body weight in response to rosiglitazone, a PPARγ agonist. These observations support the concept that alterations in PPARγ-driven mechanisms in POMC neurons can play a role in the regulation of metabolic homeostasis under certain dietary conditions.


Subject(s)
Energy Metabolism/physiology , Homeostasis/physiology , Neurons/metabolism , PPAR gamma/metabolism , Pro-Opiomelanocortin/metabolism , 3T3 Cells , Adipogenesis/drug effects , Adipogenesis/physiology , Animals , Body Weight/drug effects , Body Weight/physiology , Brain/drug effects , Brain/metabolism , Brain/physiology , Cell Line , Diet, High-Fat/methods , Energy Metabolism/drug effects , Female , HEK293 Cells , Homeostasis/drug effects , Humans , Leptin/metabolism , Male , Mice , Neurons/drug effects , Obesity/metabolism , Obesity/physiopathology , PPAR gamma/agonists , Rosiglitazone , Thiazolidinediones/pharmacology , Weight Gain/drug effects , Weight Gain/physiology
17.
Am J Physiol Heart Circ Physiol ; 310(1): H39-48, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26566726

ABSTRACT

Loss of peroxisome proliferator-activated receptor (PPAR)-γ function in the vascular endothelium enhances atherosclerosis and NF-κB target gene expression in high-fat diet-fed apolipoprotein E-deficient mice. The mechanisms by which endothelial PPAR-γ regulates inflammatory responses and protects against atherosclerosis remain unclear. To assess functional interactions between PPAR-γ and inflammation, we used a model of IL-1ß-induced aortic dysfunction in transgenic mice with endothelium-specific overexpression of either wild-type (E-WT) or dominant negative PPAR-γ (E-V290M). IL-1ß dose dependently decreased IκB-α, increased phospho-p65, and increased luciferase activity in the aorta of NF-κB-LUC transgenic mice. IL-1ß also dose dependently reduced endothelial-dependent relaxation by ACh. The loss of ACh responsiveness was partially improved by pretreatment of the vessels with the PPAR-γ agonist rosiglitazone or in E-WT. Conversely, IL-1ß-induced endothelial dysfunction was worsened in the aorta from E-V290M mice. Although IL-1ß increased the expression of NF-κB target genes, NF-κB p65 inhibitor did not alleviate endothelial dysfunction induced by IL-1ß. Tempol, a SOD mimetic, partially restored ACh responsiveness in the IL-1ß-treated aorta. Notably, tempol only modestly improved protection in the E-WT aorta but had an increased protective effect in the E-V290M aorta compared with the aorta from nontransgenic mice, suggesting that PPAR-γ-mediated protection involves antioxidant effects. IL-1ß increased ROS and decreased the phospho-endothelial nitric oxide synthase (Ser(1177))-to-endothelial nitric oxide synthase ratio in the nontransgenic aorta. These effects were completely abolished in the aorta with endothelial overexpression of WT PPAR-γ but were worsened in the aorta with E-V290M even in the absence of IL-1ß. We conclude that PPAR-γ protects against IL-1ß-mediated endothelial dysfunction through a reduction of oxidative stress responses but not by blunting IL-1ß-mediated NF-κB activity.


Subject(s)
Aorta/drug effects , Aortic Diseases/prevention & control , Endothelial Cells/drug effects , Endothelium, Vascular/drug effects , Interleukin-1beta/pharmacology , Oxidative Stress/drug effects , PPAR gamma/metabolism , Animals , Antioxidants/pharmacology , Aorta/metabolism , Aorta/pathology , Aorta/physiopathology , Aortic Diseases/metabolism , Aortic Diseases/pathology , Aortic Diseases/physiopathology , Dose-Response Relationship, Drug , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Endothelium, Vascular/physiopathology , Female , Gene Expression Regulation , Genotype , Humans , I-kappa B Proteins/metabolism , Inflammation Mediators/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , NF-KappaB Inhibitor alpha , Nitric Oxide Synthase Type III/metabolism , PPAR gamma/agonists , PPAR gamma/genetics , Phenotype , Phosphorylation , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Transcription Factor RelA/metabolism , Vasodilation/drug effects , Vasodilator Agents/pharmacology
18.
Physiol Genomics ; 48(2): 124-34, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26534936

ABSTRACT

The ligand activated nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) in the endothelium regulates vascular function and blood pressure (BP). We previously reported that transgenic mice (E-V290M) with selectively targeted endothelial-specific expression of dominant negative PPARγ exhibited endothelial dysfunction when treated with a high-fat diet, and exhibited an augmented pressor response to angiotensin II (ANG II). We hypothesize that interference with endothelial PPARγ would exacerbate ANG II-induced endothelial dysfunction. Endothelial function was examined in E-V290M mice infused with a subpressor dose of ANG II (120 ng·kg(-1)·min(-1)) or saline for 2 wk. ANG II infusion significantly impaired the responses to the endothelium-dependent agonist acetylcholine both in basilar and carotid arteries from E-V290M but not NT mice. This impairment was not due to increased BP, which was not significantly different in ANG II-infused E-V290M compared with NT mice. Superoxide levels, and expression of the pro-oxidant Nox2 gene was elevated, whereas expression of the anti-oxidant genes Catalase and SOD3 decreased in carotid arteries from ANG II-infused E-V290M mice. Increased p65 and decreased Iκ-Bα suggesting increased NF-κB activity was also observed in aorta from ANG II-infused E-V290M mice. The responses to acetylcholine were significantly improved both in basilar and carotid arteries after treatment with Tempol (1 mmol/l), a scavenger of superoxide. These findings provide evidence that interference with endothelial PPARγ accelerates ANG II-mediated endothelial dysfunction both in cerebral and conduit arteries through an oxidative stress-dependent mechanism, suggesting a role for endothelial PPARγ in protecting against ANG II-induced endothelial dysfunction.


Subject(s)
Angiotensin II/metabolism , Endothelium, Vascular/metabolism , PPAR gamma/metabolism , Acetylcholine/metabolism , Animals , Antioxidants/metabolism , Blood Pressure , Carotid Arteries/pathology , Catalase/metabolism , Diet, High-Fat , Endothelium, Vascular/pathology , Heart Rate , Ligands , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , NF-kappa B/metabolism , Oxidative Stress , PPAR gamma/antagonists & inhibitors , PPAR gamma/genetics , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Spectrometry, Fluorescence , Superoxide Dismutase/metabolism , Superoxides/metabolism
19.
Curr Hypertens Rep ; 17(12): 89, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26462805

ABSTRACT

Dysregulation of peroxisome proliferator-activated receptor gamma (PPARγ) activity leads to significant alterations in cardiovascular and metabolic regulation. This is most keenly observed by the metabolic syndrome-like phenotypes exhibited by patients carrying mutations in PPARγ. We will summarize recent findings regarding mechanisms of PPARγ regulation in the cardiovascular and nervous systems focusing largely on PPARγ in the smooth muscle, endothelium, and brain. Canonically, PPARγ exerts its effects by regulating the expression of target genes in these cells, and we will discuss mechanisms by which PPARγ targets in the vasculature regulate cardiovascular function. We will also discuss emerging evidence that PPARγ in the brain is a mediator of appetite and obesity. Finally, we will briefly review how novel PPARγ activators control posttranslational modifications of PPARγ and their prospects to offer new therapeutic options for treatment of metabolic diseases without the adverse side effects of thiazolidinediones which strongly activate transcriptional activity of PPARγ.


Subject(s)
Hypertension/metabolism , Metabolic Syndrome/metabolism , PPAR gamma/metabolism , Animals , Blood Pressure , Central Nervous System/metabolism , Humans , Hypertension/drug therapy , Hypertension/etiology , Metabolic Syndrome/complications , Metabolic Syndrome/drug therapy , Obesity/metabolism
20.
J Vet Med Sci ; 75(2): 151-7, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23018793

ABSTRACT

Methylglyoxal (MGO) is a metabolite of glucose and likely related to pathogenesis of diabetes-related vascular complications including hypertension. In this study, long-term effects of MGO on endothelial function were examined. Rat isolated mesenteric artery was treated for 3 days with MGO using an organ culture method. The contractility, morphology and protein expression of organ-cultured artery were examined. MGO (42 µM, 3 days) impaired acetylcholine (ACh: 1 nM-300 µM)-induced endothelium-dependent relaxation, while it had no effect on sodium nitroprusside (0.1 nM-10 µM)-induced endothelium-independent relaxation. MGO decreased ACh (3 µM)-induced nitric oxide (NO) production as measured by a fluorescence NO indicator, diaminofluorescein-2. Consistently, MGO inhibited ACh (3 µM)-induced phosphorylation of vasodilator stimulated phosphoprotein (an indicator of cyclic GMP production). MGO induced apoptosis in endothelium as detected by TdT-mediated dUTP-biotin nick-end labeling staining. MGO induced accumulation of superoxide in endothelium as detected by dihydroethidium staining. MGO decreased protein expression of endothelial NO synthase (eNOS). Gp91ds-tat (0.1 µM), an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX), prevented the impairment of endothelium-dependent relaxation and the decrease in eNOS protein caused by MGO. The present results demonstrated that long-term MGO treatment impairs endothelium-dependent relaxation through NOX-derived increased superoxide-mediated endothelial apoptosis.


Subject(s)
Endothelium, Vascular/drug effects , Mesenteric Arteries/drug effects , Pyruvaldehyde/pharmacology , Acetylcholine , Actins , Animals , Endothelium, Vascular/physiology , Male , Mesenteric Arteries/physiology , Nitric Oxide , Nitroprusside , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...