Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Z Naturforsch C J Biosci ; 72(3-4): 123-128, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27845890

ABSTRACT

Various metal phthalocyanines have been studied for their capacity for photodynamic effects on viruses. Two newly synthesized water-soluble phthalocyanine Zn(II) complexes with different charges, cationic methylpyridyloxy-substituted Zn(II)- phthalocyanine (ZnPcMe) and anionic sulfophenoxy-substituted Zn(II)-phthalocyanine (ZnPcS), were used for photoinactivation of two DNA-containing enveloped viruses (herpes simplex virus type 1 and vaccinia virus), two RNA-containing enveloped viruses (bovine viral diarrhea virus and Newcastle disease virus) and two nude viruses (the enterovirus Coxsackie B1, a RNA-containing virus, and human adenovirus 5, a DNA virus). These two differently charged phthalocyanine complexes showed an identical marked virucidal effect against herpes simplex virus type 1, which was one and the same at an irradiation lasting 5 or 20 min (Δlog=3.0 and 4.0, respectively). Towards vaccinia virus this effect was lower, Δlog=1.8 under the effect of ZnPcMe and 2.0 for ZnPcS. Bovine viral diarrhea virus manifested a moderate sensitivity to ZnPcMe (Δlog=1.8) and a pronounced one to ZnPcS at 5- and 20-min irradiation (Δlog=5.8 and 5.3, respectively). The complexes were unable to inactivate Newcastle disease virus, Coxsackievirus B1 and human adenovirus type 5.


Subject(s)
Coordination Complexes/chemical synthesis , Indoles/chemical synthesis , Photosensitizing Agents/chemical synthesis , Radiation Tolerance/physiology , Virus Inactivation , Zinc/chemistry , Adenoviruses, Human/drug effects , Adenoviruses, Human/growth & development , Adenoviruses, Human/radiation effects , Anions , Cations , Coordination Complexes/pharmacology , Diarrhea Virus 1, Bovine Viral/drug effects , Diarrhea Virus 1, Bovine Viral/growth & development , Diarrhea Virus 1, Bovine Viral/radiation effects , Enterovirus B, Human/drug effects , Enterovirus B, Human/growth & development , Enterovirus B, Human/radiation effects , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/growth & development , Herpesvirus 1, Human/radiation effects , Indoles/pharmacology , Isoindoles , Lasers, Semiconductor , Light , Newcastle disease virus/drug effects , Newcastle disease virus/growth & development , Newcastle disease virus/radiation effects , Photosensitizing Agents/pharmacology , Species Specificity , Static Electricity , Vaccinia virus/drug effects , Vaccinia virus/growth & development , Vaccinia virus/radiation effects
2.
Nat Prod Commun ; 9(1): 51-4, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24660461

ABSTRACT

Wild berry species are known to exhibit a wide range of pharmacological activities. They have long been traditionally applied for their antiseptic, antimicrobial, cardioprotective and antioxidant properties. The aim of the present study is to reveal the potential for selective antiviral activity of total methanol extracts, as well as that of the anthocyanins and the non-anthocyanins from the following wild berries picked in Bulgaria: strawberry (Fragaria vesca L.) and raspberry (Rubus idaeus L.) of the Rosaceae plant family, and bilberry (Vaccinium myrtillis L.) and lingonberry (Vaccinium vitis-idaea L) of the Ericaceae. The antiviral effect has been tested against viruses that are important human pathogens and for which chemotherapy and/or chemoprophylaxis is indicated, namely poliovirus type 1 (PV-1) and coxsackievirus B1 (CV-B1) from the Picornaviridae virus family, human respiratory syncytial virus A2 (HRSV-A2) from the Paramyxoviridae and influenza virus A/H3N2 of Orthomyxoviridae. Wild berry fruits are freeze-dried and ground, then total methanol extracts are prepared. Further the extracts are fractioned by solid phase extraction and the non-anthocyanin and anthocyanin fractions are eluted. The in vitro antiviral effect is examined by the virus cytopathic effect (CPE) inhibition test. The results reveal that the total extracts of all tested berry fruits inhibit the replication of CV-B1 and influenza A virus. CV-B1 is inhibited to the highest degree by both bilberry and strawberry, as well as by lingonberry total extracts, and influenza A by bilberry and strawberry extracts. Anthocyanin fractions of all wild berries strongly inhibit the replication of influenza virus A/H3N2. Given the obtained results it is concluded that wild berry species are a valuable resource of antiviral substances and the present study should serve as a basis for further detailed research on the matter.


Subject(s)
Antiviral Agents/analysis , Ericaceae/chemistry , Rosaceae/chemistry , Animals , Cell Line, Tumor , Dogs , Fruit/chemistry , Humans , Madin Darby Canine Kidney Cells , Microbial Sensitivity Tests , Orthomyxoviridae/drug effects , Paramyxoviridae/drug effects , Picornaviridae/drug effects , Plant Extracts/pharmacology
3.
Amino Acids ; 37(2): 383-8, 2009 Jul.
Article in English | MEDLINE | ID: mdl-18853101

ABSTRACT

The synthesis and the biological (antioxidant and antiviral) activities of novel hydroxycinnamic acid amides of a thiazole containing TFA.valine-4-carboxylic acid ethyl ester are reported. The amides have been synthesized from p-coumaric, ferulic and sinapic acids with the corresponding TFA.valine-thiazole-4-carboxylic acid ethyl ester using the coupling reagent N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and 4-(dimethylamino) pyridine (DMAP) as a catalyst. The antioxidant properties of the newly synthesized amides have been studied for then antioxidative activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH)* test. The newly synthesized compounds have been tested against the replication in vitro of influenza virus A (H3N2) and human herpes virus 1 and 2 (HSV-1 and HSV-2).


Subject(s)
Amino Acids/chemistry , Antioxidants , Antiviral Agents , Coumaric Acids , Thiazoles/chemistry , Animals , Antioxidants/chemical synthesis , Antioxidants/chemistry , Antioxidants/metabolism , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Biphenyl Compounds/metabolism , Cell Line , Coumaric Acids/chemical synthesis , Coumaric Acids/chemistry , Coumaric Acids/metabolism , Free Radical Scavengers/metabolism , Free Radicals/metabolism , Herpesvirus 1, Human/physiology , Herpesvirus 2, Human/physiology , Humans , Mice , Molecular Structure , Picrates/metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...